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ESTIMATION OF THE FRICTION COEFFICIENT 

OF A NANOSTRUCTURED COMPOSITE COATING

S. V. Shil’ko,1* D. A. Chernous,1 T. V. Ryabchenko,1 and V. V. Hat’ko2

Keywords: composite coatings, anodic alumina, fluoropolymer, friction coefficient, three-phase composite 
model

The frictional-mechanical properties of a thin polymer-ceramic coating obtained by gas-phase impregnation 
of nanoporous anodic alumina with a fluoropolymer (octafluorocyclobutane) have been investigated. The 
coefficient of sliding friction of the coating is predicted based on an analysis of contact deformation within the 
framework of the Winkler elastic foundation hypothesis and a three-phase micromechanical model. It is shown 
that an acceptable prediction accuracy can be obtained considering the uniaxial strain state of the coating. It 
was found that, on impregnation by the method of plasmachemical treatment, the relative depth of penetration 
of the polymer increased almost in proportion to the processing time. The rate and maximum possible depth of 
penetration of the polymer into nanoscale pores grew with increasing porosity of the alumina substrate.

Introduction

The dominating tendency of modern technology is the use of materials that are optimally “designed” or self-
organized at the nanoscale level [1]. Among them, there are structurally ordered thin porous coatings based on anodic 
(anodized) alumina (AA) in the form of nanocombs and nanobrushes [1-3]. Additional possibilities are opened by im-
pregnation (filling) of AA with polymer materials. As a result, composites with distinctive physicomechanical properties 
are formed. Thus, it was established experimentally [4] that the combination of anodic alumina with high-molecular 
compounds having a low shear strength enables one to significantly increase the antifriction characteristics of the initial 
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AA, and the use of polymer piezoelectrics as a filler — to harness the sensory and actuator properties of the functional 
composites obtained in such a way.

However, the formation laws of antifriction properties of composite coatings by introducing polymers into the 
porous structure of an anodic alumina film, and especially the possibility of a theoretical prediction of tribotechnical charac-
teristics of these nanostructured coatings, has not been studied adequately in the scientific literature up to the present time.

The purpose of this work is the development of a technique for predicting the friction coefficient of composite 
nanoporous substrate-polymer filler coatings.

Description of the model used

Determination of elastic characteristics. The ordered structure of an anodic alumina film, together with a schematic 
of its fragment separated out, is shown on Fig. 1. If its pores are filled (impregnated) by a polymer, its volume fraction c 
is determined by the simple relation

 c d
D

= 







π
2 3

2

. 

The material obtained in such a way is a unidirectional composite with the symmetry axis of its elastic character-
istics oriented along the normal to the coating surface. Its honeycomb-like hexagonal structure is characterized by three 
geometric parameters: layer thickness h, pore diameter d, and distance D between the centers of neighboring pores. As 
already mentioned, it is of interest to consider a contact loading of the given coating. As is known [5], the Winkler hy-
pothesis can be used in solving contact problems for thin elastic layers whose thickness is smaller than the characteristic 
size of the contact area. If the coating simply lies on the substrate, the stiffness coefficient kn of Winkler foundation 
(Winkler coefficient) is determined by the longitudinal (along the reinforcement direction) Young’s modulus Ez and Pois-
son’s ratio ν zx ,

 k E
h

n
z

zx

=
−( )1 2ν

, (1)

where h is coating thickness.
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Fig. 1. Microphoto (а) and structural model (b) of a porous anodic alumina film: pore (1); oxide 
cell (2); aluminum (3).
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If the coating is bonded adhesively to the substrate, the coefficient kn  is calculated by the formula

 k C
hn
zz= , (2)

where Czz  is the axial elastic modulus of the orthotropic composite corresponding to the reinforcement direction.
The effective elastic characteristics of filled coatings are determined on the basis of an elementary reinforcement 

theory [6] or the Mori–Tanaka model [7]. At the same time, the strict ordering of the structure and the regular shape of 
repeating structural elements allows one to use the more accurate three-phase model of reinforced composite for this pur-
pose [8]. The corresponding periodicity cell is a compound cylinder of infinite length and radius b imbedded in an elastically 
deformable medium (Fig. 2).

The inner region of the cylinder with a radius a is the filler (polymer), the outer layer is the matrix (alumina), and 
the medium surrounding the cell is a composite with desired elastic characteristics. The radii a and b are related to the 
volume fraction c of filler by the formula

 c a
b

= 







2

. (3)

The deformation process of the cell is described in the cylindrical coordinate system z, r, j. The z axis coincides 
with the central axis of the compound cylinder.

Materials of the matrix and filler are considered isotropic, linear, and elastic. Their basic mechanical characteristics 
are Young’s moduli Em  and E f  and Poison’s ratios ν m  and ν f . In addition, to characterize the matrix and filler, we will 
also use the components C11  and C12 of the tensor of elastic moduli and the shear modulus G of the isotropic material

 C E C E G E
11 12
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In determining the effective Young’s modulus Ez  and Poisson’s ratio ν zx , we consider a uniaxial stress state of 
the model. At infinity ( r → ¥ ), the only nonzero component of the macroscopic stress tensor in the compound cylinder is 
σ z . The symmetry of the model and the uniaxial stress state allows us to obtain the general solution of elasticity equations 
for each component of the model

 u A r
A
r

u u zr
j j

j
j

z
j

z= + = =1
2 0, ,ϕ ε . (4)
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Fig. 2. Schematic of the periodicity cell of a fiber-reinforced composite investigated.
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Here, ur, uz, and uj are the elastic displacements in the cylindrical system of coordinates; ε z  is the longitudinal strain, 
which is the same for all components of the three-phase model; A1  and A2  are constants determined from boundary conditions. 
The superscript j  in Eqs. (4) stands for f, m, and k and indicates the corresponding component of the model (see Fig. 2).

From the requirement that displacements at r = 0  have to be bounded, it follows that A f2 0= .  The energy criterion 
of Eshelby homogenization [9] for the loading regime considered is satisfied if Ak2 0= .  Then, the radial stress σ rr

k  of the 
composite does not depend on the coordinate r,
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Here, Crr
k ,  Crz

k ,  and Cr
k
j  are components of the tensor of elastic moduli of the orthotropic composite in the cy-

lindrical system of coordinates.
In the uniaxial stress state of the composite, the radial component σ rr

k  of the stress tensor is zero  at r → ¥ , 
therefore, it is also zero at r b=
 σ rr

k
r b=

= 0 . (5)

On interfaces of the filler–matrix ( r a= ) and matrix–composite ( r b= ), continuity conditions for the radial dis-
placement and stress are fulfilled:

 u ur
f
r a r

m
r a= =

= ,  σ σrr
f
r a rr

m
r a= =

= ,  u ur
m
r b r

k
r b= =

= ,  σ σrr
m
r b rr

k
r b= =

= .  (6)

With account of Eqs. (4) and (5), equalities (6) represent a system of four linear equations for determining the con-
stants A f1 ,  A

m
1 ,  A

m
2 ,  and Ak1 .  Performing some mathematical transformations, we obtain

 a A C Z C c C C C C

Z C c
m

m

z

m m f m m m

mσ ε
= = −

+( ) + −( ) −( )
+ +

1 12 11 12 12 11 12

11 1( ) CC c C C c C cm m m m
12 11 11 121 1 1( ) ( ) ( )

,
−



 + − + +





 

 a
A a C C C

Z C
f

f

z

m m f m

mσ
σ

ε
= =

− +

+
1 11 12 12

11

2
,   (7)

 b A
b

c
a Z C C C

Z C
m

m

z

m m f m

mσ
σ

ε
= = −

−( ) + −

+
2
2

11 12 12

11
,   a A a bk

k

z

m m
σ σ σε
= = +1 , 

where, for the sake of brevity, the designation

 Z C C Cf f m= + −11 12 12  (8)

has been introduced.
Poisson’s ratio ν zr  of the composite is defined by the relation

 ν
ε
ε ε σzr
rr
k

zz
k

k

z

kA a= − = − = −1 . (9)

To determine Young’s modulus Ez, the axial stress σ zz
k  in the composite has to be found. We assume that it coincides 

with the average stress σ zz  in the cross section of the compound cylinder. Then,

 E c C C a c C C az
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z
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1 2 1 211 12 11 12( ) .  (10)



583

The elastic modulus Czz  is determined in the uniaxial strain state of the composite, when all components of the strain 
tensor, except ε εzz

k
z= , are equal to zero at infinity. In this case, as in the uniaxial stress state, the general solution of elastic-

ity theory equations has form (4). As before, from the requirement that displacements at r = 0  have to be zero, it follows 
that A f2 = 0, but from the energy criterion of homogenization — that Ak2 = 0. The equality of the constant Ak2  to zero means 
that the radial strain ε zz

k  does not depend on the coordinate r. Therefore, the constant Ak1  in the uniaxial strain state of the 
composite is equal to zero and

 ε rr
k r

k
k
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ku
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2 1 0 . 

The first three equations of system (6) allow us to determine the nonzero constants A f1 ,  A
m
1 ,  and Am2 . Performing 

some mathematical transformations, we obtain that
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(11)

As before, we assume that the axial stress is equal to the average stress σ zz  in the cross section of the compound 
cylinder. Then,
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Using the fourth equation of system (6), we find the radial stress and the modulus Czr  of the composite:
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The characteristics Ez , ν zr , Czz , and Czr of the orthotropic composite are related as

 C E Czz z zr zr− = 2ν . (14)

Account of the nonuniform filling of pores. It is known [4] that, during impregnation of an AA coating with a poly-
mer material, in most cases, the pores are filled only partly. We will characterize the degree of their filling by the coefficient p 
equal to the ratio between the penetration depth hp of filler and coating thickness h. The value of the coefficient p varies from 
0 (no filler) to 1 (full filling and formation of a continuous polymer phase ). At p < 1 , the coating can be considered as a two-
layer system. The characteristics Ez , ν zr , Czz , and Czr  of the material of the upper layer are determined by relations (9), 
(10), (12), and (13). For calculating the effective elastic characteristics Ez

0 , ν zr
0 , Czz

0 , and Czr
0  of the material of the lower 

layer, the above-mentioned relationships can also be used, but taking into account that C Cf f
11 12 0= = . Then, considering the 

partial filling of pores, the characteristics Ez
p , ν zr

p , Czz
p , and Czr

p  of the coating, are determined as follows:
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Calculation of the friction coefficient 

The structure of AA ordered at the nanoscale level allows us to predict the effective friction coefficient µ−
k  by means 

of the simplified calculation technique described, e.g., in [10]. In accordance with this technique, the coefficient µ−
k  is deter-

mined as the ratio between the integral value of the shear force Fu  on coating surface corresponding to the onset of sliding 
and the corresponding integral value of the normal reaction Nu . The value of Nu  is equal to the integral of the axial stress 
σ zz  over the cross section of the composite cylinder in the three-phase model:
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S

zz
f

a

zz
m

a

b
f
z= = +









 = +∫∫ ∫ ∫σ π σ σ π ε2 2

0

2
11 12

ff fA1( )  

 + −( ) +( ) = +( ) + − +π ε ε πb a C C A b c C C a c Cm
z

m m
z

f f f m2 2
11 12 1

2
11 12 112 2 1( ) 22 12C am m( )




.  

The constants a f  and am  for the uniaxial stress state of the composite are determined by relations (7) ( a af f= σ  
and a am m= σ ), but for the uniaxial strain state — by relations (10) ( a af f= ε  and a am m= ε ). The value of Fu  is found by 
integrating the shear stress τ  over the end face of the compound cylinder. For both components of the composite (matrix 
and filler), this stress satisfies the Coulomb law

 µ−
f τ µ σ τ µ σf f

zz
f m m

zz
m= =, , 

where µ−
f  and µ−

m  are friction coefficients of the filler and matrix, respectively.
Hence,
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Then, for the effective friction coefficient of the coating, we obtain
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With account of Eq. (10), the last relation, in the uniaxial stress state of coating, takes the form

 µ µ µσ σ
k

z
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E
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For the uniaxial strain state, with account of Eq. (12), we obtain

 µ µ µε ε
k

zz

f f f f m m m m

C
c C C a c C C a= +( ) + − +( )





1 2 1 211 12 11 12( ) .  (18)

In the case of partial filling of pores with polymer, the integral value of the normal reaction Nu  is determined by 
characteristics of both the upper and lower layers of the gradient coating. Consequently, for calculating the effective friction 
coefficient at p <1, the elastic moduli Ez  and Czz in Eqs. (17) and (18) have to be replaced by the quantities Ez

p  and Czz
p , 

respectively. The distribution of the limiting shear stress τ , corresponding to sliding of the body along the coating surface, 
on the surface of the upper layer of the covering is determined by the distribution of the axial stress σ zz  only in this layer. In 
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this connection, the quantities a f  and am  in relations (17) и (18), at any p > 0 , are determined by relations (7) or (10), in 
which C f

11 0¹  and C f
12 0¹ .

Experimental determination of the friction coefficient

Specimens of AA coatings of thickness h = 70 μm, with porosities c1 = 0.54 and c2  = 0.75, produced at the Belarusian 
State University of Informatics and Radioelectronics, were investigated experimentally. The substrate material was aluminum. 
Impregnation of the coatings with a fluoropolymer (octafluorocyclobutane) was carried out on a semi-commercial plant of 
plasma-chemical treatment (PCT) developed at the IMMS of the National Academy of Sciences of Belarus [11] (see Fig. 3). 
Impregnation of the nanosize pores of AA was performed by polymerization in the gas phase.

The friction coefficient of the specimens against steel was measured on a universal MTU-2K7 microtribometer at the 
tribocenter of the IMMS of the NAS of Belarus, which allows one to measure the tribotechnical characteristics at low loads 
(from 10 mN to 1 N) with sliding speeds of 0.1-10 mm/s. A 0.1-N load and sliding speed of 0.5 mm/s were chosen. The fric-
tion mode was selected such as to register the friction coefficient at the instant of partial failure of the outer polymer layer.

The characteristic experimental relations between the friction coefficient −µe
k  and the number n  of test cycles are 

presented in Fig. 4, where an initial section with a relatively low value of the friction coefficient, µ0
− , stands out. This section 

ends with a sudden increase in µ−. The duration of this section increases with processing time tt . It can be assumed that, in 
this case, the value µ0

−  registered corresponds to the friction process of indenter on the outer polymer layer. The increase in 

Fig. 3. View of the semi-commercial plant for plasma-chemical treatment.
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Fig. 4. Friction coefficient −µe
k  of composite coating vs. the number of sliding cycles n of indenter.
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the friction coefficient after the initial section is due to a partial failure of this layer. The steady-state value µ µe > 0  is consid-
ered as the experimental friction coefficient of the composite coating.
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Fig. 5. Quantity −µe
k  vs. duration time tt  of plasma-chemical treatment. The numbers at the curves 

are the volume fractions c of polymer.
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Fig. 6. The effective friction coefficient µ−
k  of composite coating vs. the volume fraction c of filler: 

1 and 2 — calculations by formulas (17) and (18), respectively. Line (1) corresponds to experimen-
tal values at tt  = 120 min.
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Fig. 7. The coefficient of filling p vs. time tt . The numbers at the curves are the volume fractions c 
of polymer filler.
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The quantity −µe
k  as a function of processing time tt  of specimen is shown in Fig. 5. At tt  > 30 min, the value of 

the coefficient −µe
k  is stabilized, because the degree of pore filling with the polymeric filler increases with time and the 

coefficient p, introduced previously at the duration tt  ≈ 30 min, reaches the maximum possible value pmax .
Let us assume that pmax  = 1 and compare the steady-state value of the coefficient µe

−  (at tt = 90 s) with the cal-
culated estimates obtained by using relations (17) and (18) with initial data for polytetrafluoroethylene E f  = 300 MPa, 
ν f  = 0.493, and µ−

f  = 0.04 [12 ], and the matrix (alumina) phase, Em  = 140 GPa and ν m  = 0.32 [3]. The friction coef-
ficient of alumina was assumed equal to the average experimental value µe

− = −µe
0  = 0.51 for an untreated covering.

The results shown in Fig. 6 allow us to conclude that the use of relation (18) for predicting the effective friction 
coefficient of the composite coating is reasonable. It is seen that the calculated estimates, obtained on the basis of equali-
ty (17), are overestimated and do not completely reflect the tendency of variation in the friction coefficient of the compos-
ite coating in relation to the volume concentration of the filler. The uniaxial strain state of the composite is more adequate. 
Relation (18) allows us to estimate the friction coefficient at full filling of pores with polymer (p = 1). As already mentioned, 
the elastic modulus Czz in this expression at p < 1 has to be replaced by the quantity Czz

p  (15).
Let us find the values of the coefficient of filling p at which the value of the coefficient µ−

k  calculated in this way 
coincides with the corresponding average experimental value −µe

k . From the data presented in Fig. 7, it follows that the 
coefficient p at tt <30 min increases practically linearly with processing time. In addition, the maximum value of the coef-
ficient of filling, pmax, increases with volume content c of the filler.

Conclusions

The methods of micromechanics of composites can be used for predicting the frictional-mechanical properties of 
thin nanocomposite (polymer-ceramic) coatings obtained by the gas-phase impregnation of porous anodic alumina with a 
monomer. The highly ordered hexagonal structure of alumina allows one to consider this coating as a unidirectional com-
posite with the symmetry axis of elastic characteristics oriented along the normal to the coating surface. Verification of the 
calculation technique proposed for determining the friction coefficient of coating showed an acceptable prediction accuracy 
on the assumption that the strain state of the composite is uniaxial. It was found that relative penetration depth of polymer 
during impregnation grew practically proportionally to the time of plasma-chemical treatment. The speed and the maximum 
possible penetration depth of polymer into nanoscale pores increased with increasing porosity of the initial coating.

This research was carried out within the framework of task 6.09 “Development of intelligent nanocomposites based 
on polymers and metal oxides for integrated executive elements of devices and automation equipment” GPNI “Physical 
Materials Science, New Materials and Technologies,” 2016-2020.
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