ISSN 1561-8323 (Print) ISSN 2524-2431 (Online)

УДК 546.284-31:544.722.13 https://doi.org/10.29235/1561-8323-2018-62-3-298-303

Поступило в редакцию 17.01.2018 Received 17.01.2018

А. Е. Соломянский¹, Д. А. Коленченко¹, Г. Б. Мельникова², Ю. В. Синькевич³, академик В. Е. Агабеков¹

¹Институт химии новых материалов Национальной академии наук Беларуси, Минск, Республика Беларусь ²Институт тепло- и массообмена им. А. В. Лыкова Национальной академии наук Беларуси, Минск, Республика Беларусь ³Белорусский национальный технический университет, Минск, Республика Беларусь

ГИДРО- И ОЛЕОФОБНЫЕ ПОКРЫТИЯ НА ОСНОВЕ ПОЛИВИНИЛОВОГО СПИРТА И НАНОЧАСТИЦ ДИОКСИДА КРЕМНИЯ

Аннотация. Изучена смачиваемость композиционных покрытий на основе поливинилового спирта (ПВС) и диоксида кремния, сформированных на кремнии методом центрифугирования из коллоидов наночастиц SiO₂ в ПВС. Установлено, что данные покрытия, модифицированные гидролизованным гептадекафтортетрагидродецилтриметоксисиланом, проявляют супергидрофобные и олеофобные свойства. Показано, что ПВС увеличивает стабильность покрытий SiO₂–ПВС к механическому воздействию.

Ключевые слова: наночастицы оксида кремния, поливиниловый спирт, супергидрофобные покрытия, фторсиланы, олеофобность

Для цитирования: Гидро- и олеофобные покрытия на основе поливинилового спирта и наночастиц диоксида кремния / А. Е. Соломянский [и др.] // Докл. Нац. акад. наук Беларуси. – 2018. – Т. 62, № 3. – С. 298–303. https://doi. org/10.29235/1561-8323-2018-62-3-298-303

Aleksandr E. Salamianski¹, Dariya A. Kalenchanka¹, Galina B. Melnikova², Yurii V. Sinkevich³, Academician Vladimir E. Agabekov¹

¹Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus, Minsk, Republic of Belarus ²A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus, Minsk, Republic of Belarus ³Belarusian National Technical University, Minsk, Republic of Belarus

HYDRO- AND OLEOPHOBIC COATINGS BASED ON POLYVINYL ALCOHOL AND SILICON DIOXIDE NANOPARTICLES

Abstract. The wettability of composite coatings based on polyvinyl alcohol (PVA) and silicon dioxide formed on silicon by the spin coating method from PVA colloid solutions of SiO_2 nanoparticles was studied. These coatings modified with hydrolysed heptadecafluorotetrahydrodecyltrimethoxysilane are found to exhibit superhydrophobic and oleophobic properties. It was found that PVA increases the wear stability of SiO_2 –PVA coatings.

Keywords: silicon oxide nanoparticles, polyvinylalcohol, superhydrophobic coatings, fluorosilanes, oleophobicity

For citation: Salamianski A. E., Kalenchanka D. A., Melnikova G. B., Sinkevich Yu. V., Agabekov V. E. Hydro- and oleophobic coatings based on polyvinyl alcohol and silicon dioxide nanoparticles. *Doklady Natsional'noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus*, 2018, vol. 62, no. 3, pp. 298–303 (in Russian). https://doi. org/10.29235/1561-8323-2018-62-3-298-303

Введение. Регулирование смачиваемости твердой поверхности, в частности придание ей супергидрофобных свойств (краевой угол смачивания водой больше чем 150° при гистерезисе смачивания меньше 10°), представляет интерес ввиду того, что супергидрофобные материалы устойчивы к загрязнениям, и на их основе можно создавать самоочищающиеся и не замерзающие покрытия для автомобилей, телевизионных антенн, воздушных и морских судов [1]. Эффект самоочищения поверхности («эффект лотоса») основан на «зависании» капли воды на неровностях микрорельефа с низкой поверхностной энергией. При таких условиях капля имеет квазисферическую форму и даже при минимальном наклоне скатывается с поверхности, очищая ее от грязи [1; 2]. Увеличение углов смачивания до 150° и выше достигается за счет формирования микрорельефа с контролируемой шероховатостью поверхностного слоя и его последующей обработкой различными гидрофобизаторами на основе алкил- или фторсиланов [1–3]. Причем использование фторированных силанов позволяет получать олеофобные покрытия и материалы, краевой угол смачивания которых неполярными жидкостями, например, гексадеканом, превышает 90° [2]. Олеофобизация поверхностей предотвращает их загрязнение различными маслами, нефтью, потожировыми следами пальцев и т. п. [2; 3].

Для формирования микрорельефа на поверхности различных материалов (кремний, сталь, стекло, бетон и др.) используется метод, в основе которого лежит осаждение на подложку сферических частиц, например, из оксидов кремния и титана [3; 4]. Преимуществом данного способа является его относительная технологическая простота [1; 3]. Кроме того, возможно применение композитных составов, содержащих помимо неорганических наночастиц и полимер, который увеличивает стабильность покрытия к механическому воздействию, вследствие чего повышается его долговечность в условиях эксплуатации [1; 2].

Цель работы – создание гидро- и олеофобных износоустойчивых покрытий на основе поливинилового спирта (ПВС) и наночастиц диоксида кремния. Пленки SiO₂–ПВС могут быть использованы для создания противообледенительных и самоочищающихся поверхностей, препятствующих осаждению органических загрязнений и конденсации влаги на изделиях, эксплуатирующихся в атмосферных условиях.

Материалы и методы исследования. Покрытия SiO₂–ПВС формировали на кремниевых пластинах методом центрифугирования [3; 5]. Предварительно кремниевые подложки прямоугольной формы площадью ~1,3 см² гидрофилизировали кипячением при 70 °C в течение 15 мин в смеси H_2O_2 : H_2SO_4 в соотношении по объему 1 : 3 соответственно. Затем их промывали дистиллированной водой и высушивали в токе азота. Для формирования покрытий наночастицы диоксида кремния (диаметр частиц ~10 нм, Aldrich) диспергировали в 5 %-ном водном растворе поливинилового спирта (ПВС) с молекулярным весом ~145000. Массовое соотношение SiO₂ и ПВС в полученных водных дисперсиях составляло 0,5 : 1,0; 1,0 : 1,0; 1,5 : 1,0 и 2,0 : 1,0. Затем на подложки наносили коллоид SiO₂ в ПВС и центрифугировали их со скоростью 3000 об/мин в течение 2 мин, используя высокоскоростную центрифугу (НПО «Центр», Беларусь). Формирование слоев SiO₂–ПВС повторяли 5 раз с целью увеличения шероховатости покрытий. Полученные образцы сушили в течение 20 мин при температуре 90 °C.

Для придания кремниевым подложкам и покрытиям SiO₂–ПВС гидро- и олеофобных свойств их обрабатывали гидролизованным гептадекафтортетрагидродецилтриметоксисиланом (ГФС). Гидролиз ГФС осуществляли в изопропиловом спирте в присутствии 25 %-ного водного раствора аммиака. Затем гидролизованный ГФС сушили при давлении 10 мм рт. ст. в течение 3 ч и растворяли его в перфторпентадекане. Полученный раствор наносили на немодифицированные или модифицированные слоями SiO₂–ПВС подложки и центрифугировали их со скоростью 3000 об/мин в течение 1 мин.

Морфологию покрытий изучали методом атомно-силовой микроскопии (ACM) на сканирующем зондовом микроскопе Nanoscope IIID (Veeco, CША). Условия сканирования: режим «прерывистого контакта», кантилевер из нитрида кремния с константой жесткости 48 H/м, скорость сканирования – 1 Гц, плотность информации составляла 512 × 512 точек [6]. Шероховатость образцов, где R_a – среднеарифметическое отклонение, R_{max} – наибольшая высота профиля поверхности измеряли согласно [7] на профилометре M2 (Mahr, Германия).

Краевой угол смачивания гидро- и олеофобных покрытий определяли методом неподвижной капли по диаметру и высоте капли дистиллированной воды или гексадекана объемом 5 мкл, нанесенной на образец [8]. Выбор гексадекана для оценки олеофобности покрытий обусловлен меньшим значением его поверхностного натяжения (18,4 мН/м) по сравнению с нефтью (26 мН/м) и маслами (33–35 мН/м) [2]. Гистерезис смачивания образцов водой оценивали по разности значений углов натекания и оттекания, которые образуются при увеличении объема капли с 5 до 8 мкл и его последующего уменьшения до 3 мкл [1]. Изображение капель воды и гексадекана на поверхности исследуемых образцов получали с помощью цифровой оптической камеры «ЛЭМТ» (БелОМО, Беларусь). Полученные изображения анализировали при помощи специализированного программного обеспечения SEM, позволяющего рассчитать углы смачивания поверхности с погрешностью $\pm 0.5^{\circ}$ [8]. Все операции проводили при температуре $20.0 \pm 2.0^{\circ}$ C.

Триботехнические характеристики образцов в паре трения сталь (сфера)–кремний (плоскость) определяли на микротрибометре возвратно-поступательного типа, который регистрирует изменение коэффициента трения (k_f) стального индентора по образцу в зависимости от числа циклов скольжения [9]. Диаметр шарика-индентора 3 мм (марка стали 95Х18), длина его хода 3 мм, линейная скорость 4 мм/с, приложенная нагрузка 0,5 Н. Абразивное изнашивание трущихся поверхностей при $k_f \sim 0,5$ являлось граничным условием проведения эксперимента [10].

Результаты и их обсуждение. Покрытия диоксида кремния, сформированные методом центрифугирования на кремниевой поверхности из коллоида SiO₂, полученного диспергированием наночастиц SiO₂ в воде, проявляют супергидрофильные свойства (краевой угол смачивания ~0°). Для увеличения износостойкости данных покрытий их формировали из коллоидов наночастиц SiO₂ в ПВС, который является высокоэффективным эмульгирующим, адгезионным и пленкообразующим полимером, а также обладает высокой прочностью на разрыв и гибкостью [11]. Модификация слоев SiO₂–ПВС гидролизованным ГФС позволяет получить поверхности, проявляющие гидро- и олеофобные свойства, при этом необработанная часть остается гидрофильной (краевой угол смачивания водой ~60°), что дает возможность создавать покрытия с чередующимися гидрофильными и гидро-, олеофобными участками. Проявление образцами гидрофобных и олеофобных свойств связано с их относительно высокой шероховатостью и наличием на поверхности олигомеров ГФС [1]. Так, шероховатость покрытия, полученного из коллоида с массовым соотношением SiO₂ и ПВС 0,5 : 1,0 составляет $R_a - 1,0$ мкм, $R_{max} - 8,6$ мкм. При этом краевой угол смачивания данного покрытия водой и гескадеканом равен 120,8 и 91,3° соответственно, что выше чем для кремния, модифицированного гидролизованным ГФС ~115,5 и 90,1°. Увеличение содержания SiO₂ в покрытиях, полученных на кремнии из коллоидов с массовым соотношением SiO₂ и ПВС 1,0 : 1,0 и 1,5 : 1,0 (рис. 1), приводит к увеличению их шероховатости и составляет R_a – 1,2 и 2,4 мкм, R_{max} – 13,5 и 14,2 мкм соответственно. По этой причине они проявляют супергидрофобные свойства после обработки гидролизованным ГФС – краевые углы смачивания композиционных слоев SiO₂-ПВС с массовым соотношением компонентов 1,0 : 1,0 и 1,5 : 1,0 водой равны 151,0 и 156,0° соответственно (рис. 2, *a*).

Олеофобность покрытий SiO₂–ПВС с массовым соотношением компонентов 1,0 : 1,0 и 1,5 : 1,0 также увеличивается – краевые углы смачивания гексадеканом равны 108,5 и 130,5° соответственно (рис. 2, b).

Дальнейшее увеличение содержания SiO_2 в слоях SiO_2 -ПВС приводит к уменьшению их шероховатости и краевых углов смачивания водой и гексадеканом, что, возможно, обусловлено увеличением плотности упаковки частиц SiO_2 в покрытии [1]. Шероховатость $R_a = 1,8$ мкм

Рис. 1. АСМ изображение морфологии слоя гидролизованного ГФС (*a*) и покрытия SiO₂–ПВС, полученного из коллоида с массовым соотношением SiO₂ и ПВС 1,5 : 1,0 (*b*)

Fig. 1. AFM image of morphology of hydrolysed heptadecafluorotetrahydrodecyltrimethoxysilane (HFS) layer (a) and SiO_2 – PVA coating obtained from colloid with SiO₂ and PVA mass ratio of 1.5 : 1.0 (b)

Рис. 2. Фото капель воды (*a*) и гексадекана (*b*) на поверхности покрытия SiO₂–ПВС, полученного из коллоида с массовым соотношением SiO₂ и ПВС 1,5 : 1,0

Fig. 2. Image of water (a) and hexadecane (b) drops on the surface of SiO_2 -PVA coating, obtained from colloid with SiO_2 and PVA mass ratio of 1.5 : 1.0

и $R_{\text{max}} = 11,0$ мкм для покрытия, полученного из коллоида с массовым соотношением SiO₂ и ПВС 2,0 : 1,0. При этом его краевые углы смачивания равны 152,5 и 128,5° для воды и гексадекана соответственно. Гистерезис смачивания водой покрытия SiO₂–ПВС, полученного из раствора с оптимальным массовым соотношением компонентов 1,5 : 1,0, составляет 2°.

Следует также отметить, что ПВС увеличивает стабильность покрытий SiO₂–ПВС к механическому воздействию стальным шариком – индентором. Так, при нагрузке 0,5 Н поверхность кремния разрушалась за один цикл скольжения (рис. 3, кривая 1), а модифицированная гидролизованным ГФС после ~60 циклов (рис. 3, кривая 2).

Рис. 3. Зависимость коэффициента трения от числа циклов скольжения: *1* – немодифицированный кремний, *2* – слой гидролизованного ГФС, *3* – покрытие SiO₂–ПВС, полученное из коллоида с массовым соотношением компонентов 1,5 : 1,0 и модифицированное гидролизованным ГФС

Fig. 3. The friction coefficient as a function of number of sliding cycles: I – unmodified silicon surface, 2 – HFS layer, $3 - SiO_2$ –PVA coating obtained from colloid with SiO₂ and PVA mass ratio of 1.5 : 1.0 and modified with HFS

Разрушение покрытия SiO_2 –ПВС, сформированного из коллоида с массовым соотношением компонентов 1,0 : 1,5, происходит после ~80 циклов, при этом частицы SiO_2 и ПВС остаются в зоне контакта поверхностей вплоть до 1000 циклов скольжения (рис. 3, кривая 3), вследствие чего абразивного изнашивания кремниевой подложки не наблюдается [8].

Заключение. Установлено, что покрытия, сформированные методом центрифугирования из водных коллоидов наночастиц диоксида кремния с поливиниловым спиртом на кремниевых по-

верхностях после обработки гидролизованным гептадекафтортетрагидродецилтриметоксисиланом, приобретают олеофобные и супергидрофобные свойства. Максимальный краевой угол смачивания водой ~156,0° при гистерезисе смачивания ~2° наблюдается для покрытия SiO₂–ПВС, сформированного из коллоида с массовым соотношением компонентов 1,5 : 1,0. Краевой угол смачивания данного покрытия гексадеканом составляет ~130,5°.

Список использованных источников

1. Boinovich, L. Principles of Design of Superhydrophobic Coatings by Deposition from Dispersions / L. Boinovich, A. Emelyanenko // Langmuir. – 2009. – Vol. 25, N 5. – P. 2907–2912. https://doi.org/10.1021/la803806w

2. Superoleophobic surfaces / J. Yong [et al.] // Chem. Soc. Rev. - 2017. - Vol. 46, N 14. - P. 4168-4217. https://doi.org/10.1039/c6cs00751a

3. Transparent, Superhydrophobic Surfaces from One-step Spin Coating of Hydrophobic Nanoparticles / L. Xu [et al.] // Appl. Mater. Interfaces. – 2012 – Vol. 4, N 2. – P. 1118–1125. https://doi.org/10.1021/am201750h

4. Transparent superhydrophobic/superhydrophilic TiO₂-based coatings for self-cleaning and anti-fogging / Y. Lai [et al.] // J. Mater. Chem. – 2012. – Vol. 22, N 15. – P. 7420–7426. https://doi.org/10.1039/c2jm16298a

5. Tyona, M. D. A theoretical study on spin coating technique / M. D. Tyona // Advances in Materials Research. – 2013. – Vol. 2, N 4. – P. 195–208. https://doi.org/10.12989/amr.2013.2.4.195

6. Микроструктурированные покрытия на основе пленок Ленгмюра–Блоджетт для направленной фиксации бактерий *Escherichia coli* / И. В. Парибок [и др.] // Весці Нац. акад. навук Беларусі. Сер. хім. навук. – 2014. – № 2. – С. 41–44.

7. Супергидрофобные покрытия на основе наночастиц диоксида кремния / А. Е. Соломянский [и др.] // Докл. Нац. акад. наук Беларуси. – 2013. – Т. 57, № 1. – С. 63–66.

8. Modeling of the process of superhydrophobic surface formation / G. B. Lisovskaya [et al.] // Proceedings of SPIE. – 2009. – Vol. 7377. – P. 737716-1–737716-5. https://doi.org/10.1117/12.837073

9. Комков, О. Ю. Микротрибометр возвратно-поступательного типа, работающий в области малых нагрузок: конструктивные особенности и методика испытания образцов / О. Ю. Комков // Трение и износ. – 2003. – Т. 24, № 6. – С. 642–649.

10. Salamianski, A. E. Tribological behavior of composite Langmuir–Blodgett films of triacontanoic acid / A. E. Salamianski, G. K. Zhavnerko, V. E. Agabekov // Surface & Coatings Technology. – 2013. – Vol. 227. – P. 62–64.

11. Lyoo, W. S. Synthesis of high-molecular-weight poly(vinyl alcohol) with high yield by novel one-batch suspension polymerization of vinyl acetate and saponification / W. S. Lyoo, H. W. Lee // Colloid & Polym. Sci. – 2002. – Vol. 280, N 9. – P. 835–840. https://doi.org/10.1007/s00396-002-0691-2

References

1. Boinovich L., Emelyanenko A. Principles of Design of Superhydrophobic Coatings by Deposition from Dispersions. *Langmuir*, 2009, vol. 25, no. 5, pp. 2907–2912. https://doi.org/10.1021/la803806w

2. Yong J., Chen F., Yang Q., Huo J., Hou X. Superoleophobic surfaces. *Chemical Society Reviews*, 2017, vol. 46, no. 14, pp. 4168–4217. https://doi.org/10.1039/c6cs00751a

3. Xu L., Karunakaran R. G., Guo J., Yang S. Transparent, Superhydrophobic Surfaces from One-step Spin Coating of Hydrophobic Nanoparticles. *ACS Applied Materials & Interfaces*, 2012, vol. 4, no. 2, pp. 1118–1125. https://doi.org/10.1021/am201750h

4. Lai Y., Tang Y., Gong J., Gong D., Chi L., Lin C., Chen Z. Transparent superhydrophobic/superhydrophilic TiO₂-based coatings for self-cleaning and anti-fogging. *Journal of Materials Chemistry*, 2012, vol. 22, no. 15, pp. 7420–7426. https://doi. org/10.1039/c2jm16298a

5. Tyona M. D. A theoritical study on spin coating technique. *Advances in Materials Research*, 2013, vol. 2, no. 4, pp. 195–208. https://doi.org/10.12989/amr.2013.2.4.195

6. Paribok I. V., Zhavnerko G. K., Agabekov V. E., Gavrilova I. A. Patterned coatings based Langmuir–Blodgett films for regulated fixation *Escherichia coli*. *Vestsi Natsyyanal'nai akademii navuk Belarusi*. *Seryya khimichnykh navuk* = *Proceedings of the National Academy of Sciences of Belarus*. *Chemical series*, 2014, no. 2, pp. 41–44 (in Russian).

7. Salamianski A. E., Zhavnerko G. K., Agabekov V. E., Sinkevich Y. V. Superhydrophobic coatings from nanoparticles of silicon dioxide. *Doklady Natsional noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus*, 2013, vol. 57, no. 1, pp. 63–66 (in Russian).

8. Lisovskaya G. B., Chizhik S. A., Salamianski A. E., Agabekov V. E., Zhavnerko G. K. Modeling of the process of superhydrophobic surface formation. *Proceedings of SPIE*, 2009, vol. 7377, pp. 737716-1–737716-5. https://doi.org/10.1117/12.837073

9. Komkov O. Yu. A reciprocating type microtribometer operating within a range of light loads: design features and methods of tests of specimens. *Trenie i iznos = Journal of Friction and Wear*, 2003, vol. 24, no. 6, pp. 642–649 (in Russian).

10. Salamianski A. E., Zhavnerko G. K., Agabekov V. E. Tribological behavior of composite Langmuir–Blodgett films of triacontanoic acid. *Surface & Coatings Technology*, 2013, vol. 227, pp. 62–64. https://doi.org/10.1016/j.surfcoat.2013.02.024

11. Lyoo W. S., Lee H. W. Synthesis of high-molecular-weight poly(vinyl alcohol) with high yield by novel one-batch suspension polymerization of vinyl acetate and saponification. *Colloid & Polymer Science*, 2002, vol. 280, no. 9, pp. 835–840. https://doi.org/10.1007/s00396-002-0691-2

Информация об авторах

Соломянский Александр Ефимович – канд. хим. наук, ст. науч. сотрудник. Институт химии новых материалов НАН Беларуси (ул. Ф. Скорины, 36, 220141, Минск, Республика Беларусь). E-mail: solasy@mail.ru.

Коленченко Дарья Александровна – стажер. Институт химии новых материалов НАН Беларуси (ул. Ф. Скорины, 36, 220141, Минск, Республика Беларусь). E-mail: daria.korzun@mail.ru.

Мельникова Галина Борисовна – канд. техн. наук, ст. науч. сотрудник. Институт тепло- и массообмена им. А. В. Лыкова НАН Беларуси (ул. П. Бровки, 15, 220072, Минск, Республика Беларусь). Е-mail: galachkax@gmail. com.

Синькевич Юрий Владимирович – д-р техн. наук, профессор. Белорусский национальный технический университет (пр. Независимости, 65, 220013, Минск, Республика Беларусь). E-mail: solasy@gmail.com.

Агабеков Владимир Енокович – академик, д-р хим. наук, профессор, директор. Институт химии новых материалов НАН Беларуси (ул. Ф. Скорины, 36, 220141, Минск, Республика Беларусь). E-mail: agabekov@ichnm. basnet.by.

Information about the authors

Salamianski Aleksandr Efimovich – Ph. D. (Chemistry), Senior researcher. Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus (36, F. Skoryna Str., 220141, Minsk, Republic of Belarus). E-mail: solasy@mail.ru.

Kalenchanka Dariya Aleksandrovna – Trainee. Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus (36, F. Skoryna Str., 220141, Minsk, Republic of Belarus). E-mail: daria.korzun@mail.ru.

Melnikova Galina Borisovna – Ph. D. (Engineering), Senior researcher. A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus (15, P. Brovka Str., 220072, Minsk, Republic of Belarus). E-mail: galachkax@gmail.com.

Sinkevich Yurii Vladimirovich – D. Sc. (Engineering), Professor. Belarusian National Technical University (65, Nezavisimosti Ave., 220072, Minsk, Republic of Belarus). E-mail: solasy@gmail.com.

Agabekov Vladimir Enokovich – Academician, D. Sc. (Chemistry), Professor, Director. Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus (36, F. Skoryna Str., 220141, Minsk, Republic of Belarus). E-mail: agabekov@ichnm.basnet.by.