ЭЛЕКТРОПРИВОД И АВТОМАТИЗАЦИЯ ПРОМЫШЛЕННЫХ УСТАНОВОК И ТЕХНОЛОГИЧЕСКИХ КОМПЛЕКСОВ

УДК 621.3.077.2

СТАТИЧЕСКИЕ МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТЯГОВОГО ЭЛЕКТРОПРИВОДА ЭЛЕКТРОБУСА ПРИ ДВУХЗОННОМ РЕГУЛИРОВАНИИ СКОРОСТИ

Радкевич А.А.

Научный руководитель – канд. техн. наук, доцент Павлюковец С.А.

В системах тяговых электроприводов электрического транспорта широко применяются электродвигатели переменного тока – синхронные и асинхронные, управляемые ПО принципу частотно-векторного регулирования Поскольку электроприводах момента. В тяговых предъявляются механических требования высокие К жёсткости характеристик электродвигателя, а условия технологического процесса предполагают работу электробуса в широком диапазоне скоростей, для электроприводов управления скоростью применяется двухзонное регулирование частоты со следующими двумя зонами:

- 1) Вниз от номинальной частоты при выполнении принятого закона частотного управления в диапазоне постоянного момента $0 \le \omega \le \omega_{\text{HOM}};$
- 2) Вверх от номинальной частоты при неизменной величине напряжения на статоре $U_1 = U_{1\text{HOM}}$ и $f_1 > f_{1\text{HOM}}$ в диапазоне постоянной мощности $\omega_{\text{HOM}} \le \omega \le \omega_{\text{MAX}}$.

Вопросу определения механических статических характеристик частотно-регулируемых электроприводов посвящены работы профессора Б.И. Фираго, доцента Ю.Е. Атаманова, который рассматривал методики для построения механических характеристик тяговых асинхронных электродвигателей применительно к транспортным средствам. Целью построение является статических данной работы механических характеристик асинхронного электропривода электробуса при двухзонном частотно-регулируемом управлении скоростью.

В качестве объекта исследования рассмотрим тяговый асинхронный электродвигатель марки ТАД 155-04-БУ1, производимый ОАО «Могилёвлифтмаш». Данный электродвигатель применяется в качестве тягового привода некоторых электробусов высокой грузоподъёмности и пассажировместимости, в частности, МАЗ 303Е10 (технически допустимая масса 18000 кг, пассажировместимость 72 человека). Трёхмерная

параметрическая модель данного электродвигателя, выполненная в программном пакете Solidworks показана на рис. 1.

Рис.1 Твердотельная 3D-модель тягового электродвигателя ТАД 155-04-БУ1

Статическую механическую характеристику $\omega = f(M)$ асинхронного электродвигателя (АД) можно построить, используя уравнение связи между угловой скоростью и вала двигателя и скольжением по формуле

$$\omega = \omega_0 \cdot (1 - s), \tag{1}$$

где $\omega 0$ – синхронная угловая скорость АД; s – скольжение АД.

Механические характеристики АД при регулировании вниз от номинальной скорости находятся в диапазоне регулирования частоты ($f = 0,1...50 \, \Gamma$ ц; $\alpha = 0,1...1$). и выражаются формулой Клосса

$$M = \frac{2 \cdot M_{K,\alpha} \cdot (1 + \alpha \cdot S_{A,K})}{\frac{S_A}{S_{A,K}} + \frac{S_{A,K}}{S_A} + 2 \cdot \alpha \cdot S_{A,K}},\tag{2}$$

где $M_{K.\alpha}$ — критический электромагнитный момент электродвигателя; $S_{A.K.}$ — абсолютное критическое скольжение электродвигателя; α — относительная частота питающей сети; S_A — абсолютное скольжение; а — отношение активных сопротивлений статора и ротора; M_0 — момент холостого хода.

Тогда угловая скорость ротора ω при переменной частоте равняется

$$\omega = \omega_{0,H} \cdot (\alpha - S_A),\tag{3}$$

где $\omega_{0,H}$ – синхронная угловая скорость АД при номинальной частоте f_{1H} .

На основании данных уравнений построим статические механические характеристики двигателя ТАД 155-04-БУ1 при различных задающих напряжениях, показанные на рис.2 и рис. 3.

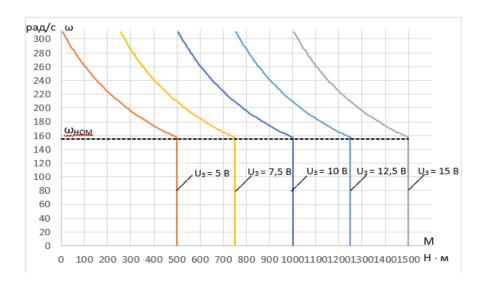


Рис.2 Механические характеристики АД ТАД 155-04-БУ1 $\omega = f(M)$ при $U_3 = var$

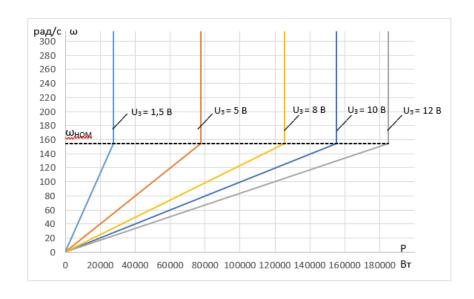


Рис.3 Механические характеристики АД ТАД 155-04-БУ1 $\omega = f(P)$ при $U_3 = var$

Как видно из графиков выше, при регулировании вверх от номинальной скорости механические характеристики АД строятся при постоянной величине напряжения статора $U_1 = U_{1\text{HOM}}$ и переменной частоте f_1 изменения этого напряжения в диапазоне частот $f_{1\text{HOM}} \leq f_1 \leq f_{1\text{MAX}}$, где диапазон изменения частоты f = 50...120 Гц, $\alpha = 1...2,4$. Механические

характеристики AД в этом частотном диапазоне определяются уравнениями (1)–(3).

В результате построения механических характеристик явно прослеживается изменение характера зависимостей при двухзонном регулировании скорости: в диапазоне $\alpha = 0,1...1$ они имеют линейный характер, а при переходе во вторую зону регулирования при $\alpha = 1...2,4$ графики имеют нелинейный характер в соответствии с формулами (1)–(3).

Литература

1. Атаманов, Ю. Е. Определение механических характеристик частотно-регулируемого асинхронного двигателя электробуса по пропорциональному закону = Determination of mechanical characteristics of a frequency-controlled asynchronous motor of an electric bus according to the proportional law / Ю. Е. Атаманов, В. Н. Плищ, А. Д. Хилько // Автотракторостроение и автомобильный транспорт : сборник научных трудов : в 2 томах / Белорусский национальный технический университет, Автотракторный факультет ; редкол.: Д. В. Капский (отв. ред.) [и др.]. – Минск : БНТУ, 2020. – Т. 1. – С. 175-181.

УДК 621.3.077.2

ПОСТРОЕНИЕ ПРЕДЕЛЬНОЙ МЕХАНИЧЕСКОЙ ХАРАКТЕРИСТИКИ ТЯГОВОГО ЭЛЕКТРОПРИВОДА ГОРОДСКОГО ЭЛЕКТРОБУСА

Радкевич А.А.

Научный руководитель – канд. техн. наук, доцент Павлюковец С.А.

Одним из важных этапов проектирования тягового электропривода электромеханических построение механических является его И характеристик, которые необходимы при исследовании динамических свойств системы и должны учитываться при разработке системы управления электроприводом. Несмотря на то, что методика построения искусственных и естественных характеристик различных электроприводов хорошо известна как при неизменном значении частоты, динамических режимах работы, применительно ТЯГОВЫМ электродвигателям транспортных средств данная задача исследована мало. Наиболее расчёта полно методика И построения искусственных механических характеристик тягового асинхронного электропривода электробуса изложена в статье [1]. На основании данной методики проведём построение предельных механических тяговых характеристик