на языке программирования С++, в которой реализованы поиск в глубину и бинарное возведение матрицы в степень.

Практическая ценность исследований заключается в возможности применения математической модели в реальных задачах, где требуется многократное движение по выбранным точкам.

УДК 12.345.67

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ПРОГРАММ АППРОКСИМАЦИИ ФУНКЦИЙ В СИСТЕМЕ МАТНСАD

Мордвинцев К.С. Научный руководитель – Рудый А.Н., канд.физ.-мат.н., доцент

В работе проводится анализ различных алгоритмов аппроксимации данных на примере конечного потребления природного газа как топливно-энергетического ресурса.

При измерении каких-либо величин иногда возникает проблема в определении функции, по которой они распределены, а также их коэффициенты. Так же с помощью аппроксимации данных появляется возможность спрогнозировать дальнейшее поведение измеряемой величины. В качестве исходных данных рассмотрим конечное потребление природного газа (включая попутный). Данные приведены в Таблице 1.

Таблица 1 – Конечное потребление природного газа.

Год	201	201	201	201	201	201	202
	4	5	6	7	8	9	0
Объ	425	384	399	403	406	391	373
ем, м ³	7	5	2	3	0	4	8

Для аппроксимации воспользуемся несколькими методами в среде Mathcad. Изначально предположим, что данная зависимость является квадратной.

Метод обратной матрицы.

При вычислении производных от суммы квадратов отклонений искомой функции относительно начальных данных получается система уравнений. Для решения данной системы используется метод обратной матрицы:

$$\mathbf{n}:=6$$
 - количество обрабатываемых данных $\mathbf{k}:=0...\mathbf{n}$ $\mathbf{m}:=3$ - высшая степень полинома $\mathbf{i}:=0...\mathbf{m}$ - номер столбца в системе уравнений $\mathbf{j}:=0...\mathbf{m}$ - номер строки в системе уравнений $\mathbf{j}:=0...\mathbf{j}$ - искомая функция $\mathbf{j}:=0...\mathbf{j}$ - искомая функция $\mathbf{j}:=0....\mathbf{j}:=0...\mathbf$

Функция Minimize.

Данная функция меняет значения аргументов, начиная от заданных значений, так, чтобы значение функции, а в данном случае это сумма квадратов отклонений, была минимальная при заданной функции. Данная функция производит расчеты по алгоритму решения KNITRO.

Так же используется градиентный метод поиска, который заключается в том, что для начальных данных находятся все локальные значения, а после выбирается наименьший из них и считается все в данной точке.

$$\begin{split} &\text{fun}(x,a,b,c,d) \coloneqq a+b \cdot x + c \cdot x^2 + d \cdot x^3 & \Sigma(a,b,c,d) \coloneqq \sum_{i=\text{ORIGIN}}^{\text{last}(x)} \left(\mathbf{f}_i - \text{fun}\big(x_i,a,b,c,d\big)\right)^2 \\ &a \coloneqq 0 \quad b \coloneqq 0 \quad \underline{c} \coloneqq 0 \quad d \coloneqq 0 \quad \text{- начальные приблежения} \\ &(\underbrace{a,b,c,d}_{\text{M.M.M.}}) \coloneqq \text{Minimize}(\Sigma,a,b,c,d) \qquad a = 8813.479 \qquad b = -2225.148 \qquad c = 331.583 \qquad d = -16.006 \\ &\underbrace{\sum_{k} \left(\mathbf{f}_k - \text{fun}\big(x_k,a,b,c,d\big)\right)^2}_{\sqrt{n+1}} = 65.694 \qquad \qquad \underset{\text{R.}}{\mathbb{R}} \coloneqq \text{corr}(\mathbf{f},\text{fun}(x,a,b,c,d))^2 = 0.822 \end{split}$$

Функция linfit.

С помощью данной функции реализуется линейная регрессия общего вида.

Графики полученный аппроксимаций с начальными точками представлен на рисунке 1.

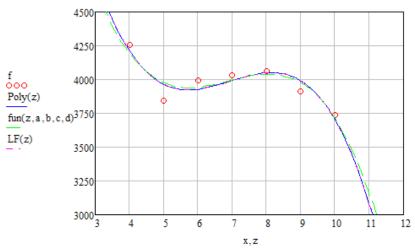


Рис. 1. Начальные данные и функции, полученные после аппроксимации

Из рисунка 1 видно, что в методе обратной матрицы и функции linfit значения коэффициентов совпадает, а у функции minimize отличны, но очень близки к ним.

Прогнозирование.

Исходя из полученных аппроксимаций можно спрогнозировать дальнейшее потребление природного газа. Видно, что в данный момент идет снижение потребления. Это связано с тем, что в некоторых местах можно сократить потребление газа за счет местных видов топлива. Так же была запущена БелАЭС.

Удобность в применении.

При использовании метода **обратной матрицы** можно получить только полиноминальную функцию. Так же запись данного метода слегка громоздка.

При применении функции **Minimize** уже можно задавать различные функции, например добавить логарифм или экспоненту. Но в случае увеличения количества коэффициентов требуется их добавить во все формулы в расчете.

В функции **linfit** так же присутствует возможность задания любой функции. И в отличии от **Minimize** не требует лишних затрат на изменение алгоритма решения.

Таким образом, для аппроксимации данных и дальнейшего прогнозирования удобнее всего использовать функцию **linfit**.

При прогнозировании дальнейшего использования природного газа было получено, что его объемы будут уменьшаться.

Литература

- 1. Макаров Е.Г. Mathcad: Учебный курс (+CD). СПб.: Питер, 2009. 384 с.: ил.
- 2. Энергетический баланс Республики Беларусь: статистический сборник [Электронный ресурс] / Под ред. И.В. Медведевой 2019. Режим доступа: https://www.belstat.gov.by/ofitsialnaya-statistika/publications/izdania/public compilation/index 39984/ (20.04.2023).
- 3. Энергетический баланс Республики Беларусь: статистический сборник [Электронный ресурс] / Под ред. И.В. Медведевой 2019. Режим доступа: https://www.belstat.gov.by/ofitsialnaya-statistika/publications/izdania/public compilation/index 7863/ (20.04.2023).

УДК 12.345.67

ЭРГОДИЧЕСКИЕ МАРКОВСКИЕ ПРОЦЕССЫ

Латышенко К.Е. Научные руководители – Рудый А.Н., к.ф.-м.н., доцент, Бань Л.В., старший преподаватель

Рассмотрим случайный процесс с дискретными состояниями. И пусть переход из состояния в состояние происходит под воздействием простейшего потока событий- Марковский случайный процесс. Подобные процессы возникают при решении многих технических и экономических задач.

Нами исследовалась работа заправочной станции с двумя каналами обслуживания, при этом число машин в очереди, если каналы заняты- не больше трех. Пусть λ — интенсивность приезда машин на станцию и μ — интенсивность заправки машины. Данная система имеет 6 состояний:

- S_1 2 канала обслуживания свободно.
- $S_2 1$ канал обслуживания занят.
- $S_3 2$ канала обслуживания занято, очередь не образовалась.
- $S_4 2$ канала обслуживания занято, 1 машина в очереди.
- S_5-2 канала обслуживания занято, 2 машины в очереди.
- $S_6 2$ канала обслуживания занято, 3 машины в очереди.

Построим граф рассматриваемой системы:

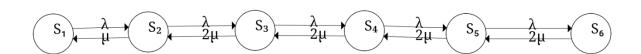


Рис.1. Граф системы