ЛИТЕРАТУРА

1. Дж.Уайтсайдс, Д.Эйглер, Р.Андерс и др. Нанотехнология в ближайшем десятилетии. Прогноз направления исследований. /Под.ред. М.К.Роко, Р.С.Уильямса и П.Аливисатоса. Пер с англ. — М.: Мир, 2002. — 292 с. 2. Вибрации в технике. Справочник. Т.3- М.: Машиностроение, 1979 — 545 с. 3. Детали машин. Расчет и конструирование. Справочник. Т.3.- М: Машиностроение. 1969 - 471 с.

УДК 621.01

И.П. Филонов, П.П. Анципорович, В.К. Акулич, Т.И. Булгак

ПОВЫШЕНИЕ ДОЛГОВЕЧНОСТИ ТРУЩИХСЯ ЭЛЕМЕНТОВ ВРАЩАТЕЛЬНЫХ КИНЕМАТИЧЕСКИХ ПАР МЕХАНИЗМОВ МАШИН НА ОСНОВЕ МОДЕЛИРОВАНИЯ ИХ ИЗНОСА

Белорусский национальный технический университет Минск, Беларусь

В настоящее время широкое распространение получила технология нанесения износостойких покрытий на рабочие поверхности деталей машин. Эффективность такого метода повышения ресурса работы и восстановления размеров рабочих поверхностей может быть во многом повышена, если такое нанесение проводить с предварительным прогнозированием формы и величины изношенных поверхностей на основе моделирования и численного эксперимента. Однако такое моделирование должно максимально отражать реальные соотношения силовых, скоростных и временных параметров, определяющих износ того или иного подвижного соединения. Это означает, что силовое взаимодействие трущихся элементов должно определяться не только кинематическими и массовыми характеристиками звеньев механизмов, но и (приводного двигателя) и сил сопротивления соотношением сил движущих (выполняемой технологической операции). Речь идет о том, что реакции в кинематических парах механизмов машин в каждом конкретном значении обобщенной координаты (угла поворота приводного вала) будут различными. Определение их значений в каждом таком положении требует учета индивидуальных особенностей силового взаимодействия отдельных звеньев, их веса, кинематических особенностей относительного движения, а также сил трения в подвижных соединениях. Другими словами, предлагается в оценку конфигурации изношенных поверхностей положить не механизм, а так называемый машинный агрегат, объединяющий в себе привод (двигатель, коробку скоростей) и исполнительный механизм, к выходному звену которого приложена сила технологического сопротивления. Иначе говоря, предлагается в основу оценку эпюры износа трущихся поверхностей деталей положить силовые, кинематические, массовые и геометрические характеристики конкретной рабочей машины с конкретным приводным двигателем. Такой подход позволит более точно выявить особенности износа трущихся поверхностей подвижных звеньев. Кроме того, возможность представляется также выявить особенности кинематической пары в отдельности. Это, в свою очередь, позволяет решить не только проблемы повышения долговечности за счет выявления износа наиболее интенсивно изнашивающихся соединений, И, немаловажно, решить но что равноресурсности по износу всех кинематических пар механизмов, входящих в

конкретную машину, например, путем формирования износостойких покрытий с различным значением их коэффициента износа.

Для достижения такого повышения долговечности предлагается износостойкие покрытия, наносимые на трущиеся поверхности деталей в поперечном направлении, наносить в соответствии с эпюрами их износа так, чтобы на участки поверхности с большим износом наносить покрытия, отличающиеся большей износостойкостью и наоборот. При этом, как отмечалось ранее, при оценке конфигурации изношенных поверхностей подвижных соединений звеньев, скорости скольжения и давление в них определяются с учетом кинематических и динамических характеристик машины в целом, т.е. с учетом характеристики приводного двигателя и силы технологического сопротивления.

Ко всему сказанному предлагается учитывать также то, что обобщенная скорость машины (скорость вращения ее главного приводного вала) внутри цикла не остается постоянной, а изменяется. Часто требуется увеличить износостойкость отдельной кинематической пары, как наиболее нагруженной и быстро изнашивающейся. В этом случае требуется знать характер износа такого соединения, обусловленный вышеперечисленными параметрами.

Количественная оценка износа подвижных элементов машины (кинематических пар) за время *t* работы осуществляется на основании выражения [1]

$$u = k \int_{0}^{t} p v_{\rm ck} dt , \qquad (1)$$

где u — износ; p — давление в рассматриваемой зоне контакта трущихся поверхностей; $v_{\rm ck}$ — скорость скольжения (относительная скорость); k — коэффициент износа.

Цикличность процессов в машинах определяется обобщенной скоростью как некоторой функцией обобщенной координаты. Если обобщенная координата ϕ – угол поворота приводного вала машины, то обобщенная скорость $\omega = \frac{d \phi}{dt}$. Тогда износ за один цикл установившегося движения машины ($\phi = \phi_u$) можно определить по формуле

$$u = k \int_{0}^{\varphi_{\rm u}} p \frac{v_{\rm ck}}{\omega} d\varphi \,. \tag{2}$$

Величина $\frac{v_{\rm ck}}{\omega}$ представляет собой аналог скорости скольжения (передаточную функцию). Если звенья 1 и 2 образуют вращательную кинематическую пару, то

$$\frac{v_{\rm ck}}{\omega} = \left| \frac{\omega_1 - \omega_2}{\omega} \right| r = \left| i_1 - i_2 \right| r \,, \tag{3}$$

где r — радиус цилиндрических элементов пары; $i_1 = \frac{\omega_1}{\omega}$ и $i_2 = \frac{\omega_2}{\omega}$ — передаточные функции звеньев 1 и 2 (по отношению к начальному звену, которому приписывается обобщенная координата).

Коэффициент износа может быть вычислен по формуле

$$k = \frac{J_u}{p_{\rm cp}},$$

где J_u — интенсивность изнашивания (износ, приходящийся на единицу пути трения), $p_{\rm cp}$ — среднее значение давления p. Величина J_u является функцией физикоматематических свойств материала и определяется на основании опытных данных [1]. Закон распределения давления в зоне контакта определяется формой изношенных

контактирующих поверхностей [1], т.е. износ зависит от давления и наоборот. Часто для приработанных цилиндрических поверхностей распределение давления принимают косинусоидальным:

$$p = p_{\text{max}} \cos \alpha$$
,

где α – угловая координата расчетного сечения, отсчитываемого от направления нормали к поверхности трения, причем – $90^{\circ} \le \alpha \le 90^{\circ}$. Согласно [2, 3]

$$p_{\max} = \frac{2R}{\pi br},$$

где R — нормальная реакция в кинематической паре; b — осевой размер поверхности трения (ширина подшипника). Тогда

$$p = \frac{2R}{\pi h r} \cos \alpha \,. \tag{4}$$

При переменной по величине и направлению реакции R формула (2) должна применяться для каждого мгновенного положения.

С учетом выражений (2) – (4) износ звеньев, образующих вращательную пару, за один цикл установившегося движения можно представить следующим образом:

$$u_1^{\mu} = \frac{2k_1}{\pi b_1} \int_{0}^{\varphi_{\mu}} R_{21} |i_1 - i_2| \cos \alpha_1 d\varphi,$$

$$u_2^{\mathrm{u}} = \frac{2k_2}{\pi b_2} \int_{0}^{\varphi_{\mathrm{u}}} R_{21} |i_1 - i_2| \cos \alpha_2 d\varphi.$$

На рис.1 изображена схема вращательной пары 1-2 с указанием используемых систем координат и их угловых параметров. Используем следующие обозначения: β_1 – угловая координата расчетного сечения в системе координат X_1Y_1 , связанной со звеном 1; β_2 – угловая координата этого же сечения в системе координат X_2Y_2 , связанной со звеном 2; ϕ_R – угол между вектором реакции R_{21} и осью абсцисс неподвижной системы координат X_0Y_0 ; ϕ_1 и ϕ_2 – угловые координаты звеньев 1 и 2 (их функция положения). Тогда для звена 1

$$\alpha_1 = \varphi_1 + \beta_1 - \varphi_R.$$

Аналогично для звена 2

$$\alpha_2 = \varphi_2 + \beta_2 - \varphi_R.$$

Если одно из звеньев, например звено 2, не имеет вращательного движения (является ползуном или станиной), то $i_2 = 0$ и $\phi_2 = 0$.

Задаваясь рядом последовательных значений углов β_1 и β_2 и определив износ u_1 и u_2 в точках с этими координатами, можно построить эпюры распределения износа элементов вращательной пары.

Для расчета ожидаемого износа элементов кинематических пар предварительно определяются кинематические характеристики механизма и выполняется исследование его динамической нагруженности с учетом реального закона движения звеньев.

На основании изложенной методики разработан алгоритм и составлена подпрограмма для расчета износа элементов вращательной кинематической пары. Схема алгоритма этой подпрограммы представлена на рис. 2. Входными параметрами подпрограммы являются: J_{u1} и J_{u2} – интенсивность изнашивания; b – длина и r – радиус подшипника (по рис. 1); N_{u} – расчетное число циклов; n – размерность передаваемых в подпрограмму массивов; ϕ_{o6} – массив значений обобщенной координаты; i_1 и i_2 –

массивы передаточных функций звеньев 1 и 2; R_{21} — массив значений реакции; ϕ_R — массив значений угла между R_{21} и осью X_0 ; ϕ_1 и ϕ_2 — массивы значений угловых координат звеньев.

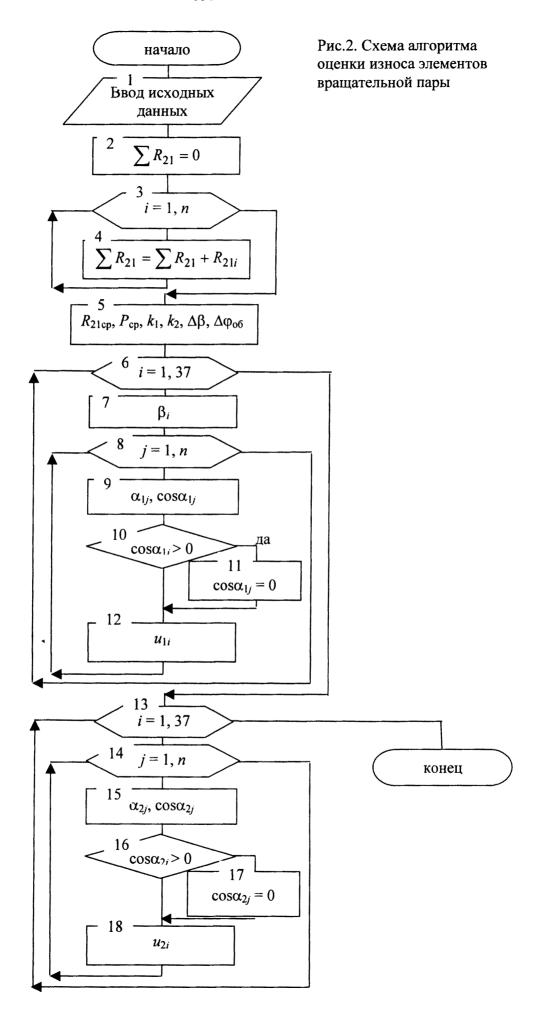


Рис. 1. Схема соединения вращающихся звеньев: кривошипа 1, шатуна 2

В блоках 2-5 вычисляются средние за цикл значения $R_{21\text{cp}}$ и p_{cp} , коэффициенты износа k_1 и k_2 , шаг $\Delta\beta=\frac{2\pi}{36}$, шаг $\Delta\phi_{06}=\frac{2\pi}{n-1}$. Блоки 6-7 организуют внешний цикл по углу β_i , а блоки 8-12 — внутренний цикл по углу ϕ_{06} . Таким образом, для каждого угла β_i (от 0 до 2π) выполняется расчет износа u_{1i} для первого звена кинематической пары за весь цикл установившегося движения ($0 \le \phi_{06} \le 2\pi$), а затем за заданное число циклов $N_{\text{ц}}$. При этом из подсчета исключаются те точки, в которых $|\alpha_i| > \frac{\pi}{2}$.

Аналогичным образом в блоках 13-18 организован расчет износа для второго звена кинематической пары.

примера на рис.3 представлены эпюры качестве кинематической пары кривошипный вал - станина в горизонтально-ковочной машине с кривошипно-ползунным механизмом при максимальной исполнительным сопротивления $F_{3\max}=120000$ Н, приложенной к ползуну, технологического количество циклов нагружения $N_u=10^8$. Как видно из рис.3, износ рабочих поверхностей обеих деталей неравномерный с различными значениями максимальных Это означает, что выбор соотношений твердостей контактирующих поверхностей должен учитывать удобство ремонта, связанное с концентрированием износа на той или иной детали, и условия работы после нанесения износостойких покрытий на обе изношенные поверхности. Дело в том, что в местах с большим износом давление уменьшается, а в местах с меньшим износом оно в процессе работы увеличивается при неизменной прижима. Знание характера силе контактирующих поверхностей представляет возможность формировать износостойкие покрытия на рабочих поверхностях с учетом особенностей их приработки, управляя распределением (концентрацией) износостойких составляющих отдельным участкам поверхностей.

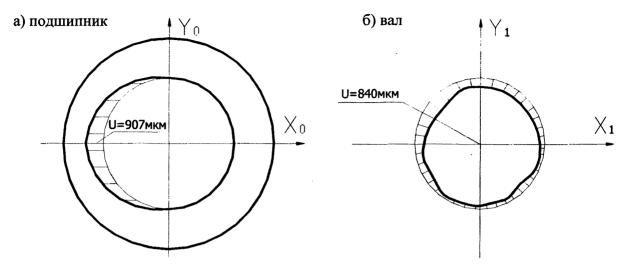


Рис. 3. Эпюры износа рабочих поверхностей элементов кинематической пары "кривошипный вал — подшипник (станина)" горизонтально-ковочной машины с кривошипно-ползунным исполнительным механизмом

Здесь следует учитывать еще одну особенность нарушения работоспособности машины, обусловленную износом. Как видно из рис.3, после износа ось вращения вала сместится в сторону местного износа; при этом центричность его вращения нарушится в связи с несимметричным распределением масс относительно оси вращения. Восстановление размера после ремонта без учета характера износа вала приведет к еще большей его разбалансировке, и работоспособность такого соединения может ухудшиться. Здесь следует учитывать и то, что замена детали с местным неравномерным износом новой восстанавливает нарушенное первоначальное положение оси вращения. При этом равномерное распределение износа в сочетании с большой твердостью поверхностного слоя обеспечивает незначительный износ более сложной и дорогой детали без нарушения в ней центричности изнашивающейся поверхности; местный характер износа в сочетании с мягким поверхностным слоем концентрирует износ на дешевой, легко заменяемой детали (обычно на втулке или вкладыше), благодаря чему ремонт упрощается. Все эти и другие особенности могут быть учтены на основе моделирования процессов изнашивания без проведения дорогостоящих, а иногда и невозможных экспериментальных исследований.

ЛИТЕРАТУРА

1. Лукичев Д.М., Тимофеев Г.А. Расчет износа элементов кинематических пар с использованием ЭЦВМ. – М.: МВТУ, 1984. – 36с.; 2. Теория механизмов и машин/ Под ред. К.В.Фролова. – М.: Высш. шк.,1987. – 496с.; 3. Трение, изнашивание и смазка: Справочник. Кн.1/ Под ред. И.В.Крагельского и В.В.Алисина. – М.: Машиностроение, 1978 – 400с.