$$\Delta_1(\lambda) = \frac{a_1}{2a}\lambda + \frac{a_3}{2a}\lambda^3.$$

Тогда в качестве частных решений Y_i можно взять функции

$$Y_1(t) = Y_0(\lambda_1, t), \quad Y_2(t) = \text{Re}\,Y_0(\lambda_2, t), \quad Y_3(t) = \text{Im}\,Y_0(\lambda_2, t),$$

где λ_I – действительный корень уравнения (14), а λ_2 – один из его комплексных корней. Заметим, что ряд (13) сходится абсолютно и его можно дифференцировать необходимое число раз.

ЛИТЕРАТУРА

1. Прудников А.П., Брычков Ю.А., Марычев О.И. Интегралы и ряды. Элементарные функции. М., Наука, 1981.

УДК 621.88.024

А.В. Кузьмин

МОДЕЛИРОВАНИЕ И НЕКОТОРЫЕ ХАРАКТЕРИСТИКИ ПОПЕРЕЧНЫХ МЕХАНИЧЕСКИХ ВОЛН

Белорусский национальный технический университет Минск, Беларусь

Наиболее удобно анализировать процессы образования и перемещения поперечных механических волн на гибкой нерастяжимой нити. Последний признак - нерастяжимость - говорит о способности нити сопротивляться только растягивающим силам. Из всего многообразия форм волн самой простой является треугольная или близкая к ней форма (например, трапецеидальная).

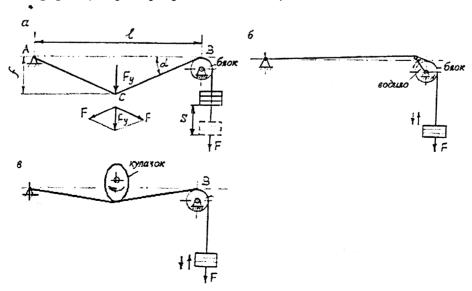


Рис. 1. Схема устройства с нитью

На схеме рис.1, а показана базовая модель устройства с гибкой нерастяжимой нитью. Базовой эта модель может считаться потому, что она наиболее проста по принципу действия, а основанные на ней устройства широко распространены в технике. Это и подвесные канатные дороги с движущимися грузовыми или пассажирскими кабинами и тележками, это и полиспастные системы в грузоподъемных машинах, это и различные волновые механизмы на гибких связях и другие виды одиночных поперечных волн. В рассматриваемой модели один конец нити неподвижно закреплен в точке A, а другой переброшен через направляющий блок и к нему подвешен груз весом F. Направляющий блок свободно вращается на своей оси. Посередине пролета длиной l с помощью некоего толкателя- генератора волны (например стержня с закругленным концом или стержня с роликом на конце) к нити приложена сила F_Y , под действием которой нить получает прогиб y=f. Вместо груза к свободному концу нити может быть присоединена пружина растяжения, другой конец которой должен быть закреплен неподвижно. При изменении прогиба нити блок будет вращаться против часовой стрелки независимо от того, в какую сторону направлен прогиб: вверх или вниз. Это связано с тем, что разница между, длиной наклонных участков нити (отрезков AC и BC) и базового участка AB (который остается постоянным) будет всегда положительной.

Если блок насажен на рабочий вал, то он может быть использован в качестве приводного устройства.

Очевидно, что в обеих ветвях нити, то есть на участках AC и BC натяжение будет примерно равным F, если не учитывать потери в направляющем блоке на трение в его подшипниках и на преодоление жесткости нити. Например, для каната эти потери могут быть учтены величиной КПД блока $\eta = F_{n\delta}/Fc_{\delta}$, где $F_{n\delta}$ — натяжение набегающей ветви, Fc_{δ} — натяжение сбегающей ветви нити, η =0, 97-0, 98 для стальных канатов. Исходя из этого, получим следующее соотношение для параллелограмма сил (угол между силами F равен 180° - 2α):

$$F_y=2F\sin\alpha$$
.

Построим график $f(x) = F_y / F = 2 \sin \alpha$, то есть график относительной нагрузки (или график при единичной силе F). При этом будем иметь ввиду, что реальные значения угла α должны быть несколько меньше 90^0 , поскольку при данной схеме ветви нити никогда не будут параллельными.

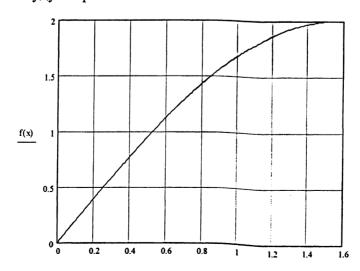


Рис. 2. График функции $f(x)=f(\alpha)$, (где $x=\alpha$)

На графике рис. 2 углы α на оси абсцисс, соответствующие прогибам f, отложены в радианах. Чтобы определить соответствующую силу F_y нужно ординату на графике умножить на величину силы F. Мы видим, что с увеличением прогиба нити функция $f(\alpha)$ стремится к значению, равному двум. Это означает, что в этом случае для удержания на весу груза весом F в середине пролета нити нужно приложить силу F_y , в два раза большую, чем вес груза F. То есть, мы получим полиспаст для выигрыша в скорости в два раза и, соответственно,- проигрыша в силе. Практически это будет выглядеть так: если в точке приложения силы F_y поместить блок и через него передавать нагрузку на нить, то при диаметре блока, примерно равном длине пролета нити I, ветви ее будут параллельны друг другу и такое устройство превратится в полиспаст для выигрыша в скорости. Заметим здесь, что для небольших значений углов α (меньших 0,5 радиан) сила F_y будет меньше силы F, то есть мы будем иметь выигрыш в силе.

Если в точке *С* подвесить подвижный блок с крюком, а правый (свободный) конец нити освободить от груза и прикладывать к нему силу, то при больших прогибах нити получим устройство в виде полиспаста для выигрыша в силе примерно в два раза (мы говорим "примерно" потому, что точное значение выигрыша в силе будет равно двум только при параллельных ветвях прогнутой нити, то есть, когда диаметр блока будет принят равным пролету нити). Таким образом, в этом случае фактически мы будем имеем дело с типичной полиспастной системой с кратностью, равной двум. Напомним, что кратность показывает, какой выигрыш в силе или скорости мы имеем. Для одинарного полиспаста (как в нашем случае) кратность равна числу ветвей каната, на которых висит груз.

Для этого же устройства найдем теперь перемещение S нити при изменении ее прогиба f, то есть перемещение груза (путь силы F). Из условия равенства работ сил F_y и F (без учета потерь на преодоление жесткости нити и трения в блоке): $F_y f = FS$. Поскольку $F_y = 2F \sin \alpha$, то

$$S = 2f \sin \alpha$$
, или $S_1 = S/f = 2\sin \alpha$, (1)

то есть, естественно, мы получили такую же функцию, что и для силовых соотношений в нити, но только для перемещений груза. Из формулы (1) видно, что абсолютное перемещение прямо пропорционально прогибу нити, то есть амплитуде волны.

На рис.3 показан график (сплошная линия) функции $f(\alpha) = S_1 = 2\sin\alpha$. в диапазоне углов от нуля до 90^0 . Чтобы найти абсолютное перемещение S нужно ординату на графике умножить на прогиб f нити, соответствующий углу α . На графике видно, что при α , близком к 90^0 перемещение нити будет в два раза больше ее прогиба. Это означает, что устройство в этом случае превращается в полиспаст для выигрыша в скорости (примерно в два раза), то есть мы получили тот же результат, который иллюстрируется предыдущим графиком для силовых соотношений в описываемом устройстве.

Несколько забегая вперед, отметим, что похожие графики можно получить для многих устройств, перемещение ведомых звеньев которых основано на деформировании треугольного (или близкого к нему) контура их рабочих звеньев. В частности, к таким устройствам можно отнести большую группу рычажных механизмов, например кривошипно-ползунные и кулисные.

Перемещение свободного конца нити можно получить исходя из другого очевидного постулата[1]: оно должно быть равно разности длин наклонных участков нити и их проекции на исходный, недеформированный участок нити длиной l, то есть перемещение S должно быть равно

$$S=AC+BC-AB$$
, или $S=2\frac{l}{2\cos\alpha}-l=l(\frac{1}{\cos\alpha}-1)=l\frac{1-\cos\alpha}{\cos\alpha}$.

Заменив $l = 2f/tg\alpha$ получим

$$S = \frac{2f(1-\cos\alpha)}{tg\alpha * \cos\alpha} = \frac{2f(1-\cos\alpha)}{\sin\alpha} = 2f * tg\frac{\alpha}{2}.$$

Относительное перемещение
$$S_1 = S/f = 2 * tg \frac{\alpha}{2}$$
. (2)

Как видим формулы (a) и (б) отличаются друг от друга. На графике рис. представлены кривые $S_I = f(\alpha)$ и $S_1 = F(\alpha)$ (график $S_1 = F(\alpha)$ - пунктирная кривая), построенные соответственно по формулам (a) и (б). Значения S_I сходятся только при углах, близких к 90^0 .

Заметим, что зависимости (1) и (2) получены для круговых тригонометрических функций, что не соответствует фактической геометрии устройства. При более сложных контурах волны получить зависимость типа (1) затруднительно, поэтому предпочтительнее использовать постулат, положенный в основу вывода формулы (2), то есть определять перемещение нити как разность длин контура волны и ее проекции на участок, определяемый началом и концом волны. Естественно, что в этом случае функция $F(\alpha)$ будет более сложной

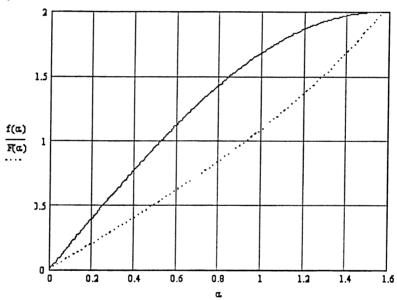


Рис. 3. Сравнение функций $f(\alpha)$ и $F(\alpha)$: сплошная линия - $f(\alpha)$, пунктирная линия - $F(\alpha)$, α - в радианах.

Функции типов (1) и (2) можно назвать кратностью волны k (по аналогии с полиспастными системами, принимая $k=S_I$). Они определяют соотношения между силами и перемещениями ведущих и ведомых частей волнового устройства. Это означает, что можно определить, например, силу тяги на крайних участках одиночной волны как частное от деления поперечной к базе волны силы F_y на кратность k, а абсолютное перемещение конца волны найти как произведение кратности k на амплитуду волны (прогиб нити).

Функции, аналогичные (1) и (2) и определяющие кратность можно получить для любой формы волны, в частности для таких простых как трапеция, прямоугольник, полуокружность, Например, для трапецеидальной формы $k=2\cdot tg(\alpha/2)$, где α - угол наклона боковых сторон трапеции к базе. Для волны прямоугольной формы кратность

есть величина постоянная и равна двум (соответствует полиспасту с подвижным блоком). Для полуокружности кратность также постоянна и равна $k=(\pi-1)$. Для более сложных форм надо знать функцию длины дуги волны. Из курса математики известно, что длина дуги кривой

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx$$
, где $f(x)$ – функция уравнения кривой волны, a и δ –

пределы интегрирования, определяющие базу волны, то есть ее начало и конец (ее координаты по оси x). Интеграл в этом выражении не всегда легко берется из-за наличия корня в нем, однако существуют приближенные формулы для вычисления L. Разница $S=L-\overline{ab}$ (где отрезок \overline{ab} - база волны) определяет перемещение свободного конца нити (груза). Поскольку почти всегда удается представить S в виде некоторой функции с прямой зависимостью от амплитуды волны h=f, то можно получить выражение $S_1 = S/h = k$, где k = f(a,b)- кратность волны. Как правило оказывается, что кратность такой сформировавшейся волны с постоянной амплитудой есть также величина постоянная. Например, для циклоиды L=8r (r- радиус окружности, с которой разворачивается циклоида, высота циклоиды h=2r), $S=L-2\pi r=0.86r$, кратность $k = S_1 = S/h = 0.86r/2r = 0.43$. Для синусоиды, описывающей контур гармонической волны и имеющей амплитуду h=r (r-радиус окружности), $\overline{ab}=\lambda$ ($\lambda=2\pi\cdot r$ -длина волны), $f(x) = \sin x$, (где x-угол дуги окружности в радианах), получим k=1,36 (в пределах от 0 до 2π). Если при образовании волны в каком либо техническом устройстве на нити окажется n гармонических волн длиной λ каждая, то в начале пути такой волны нить сократиться на величину nkr. В конце пути при ее распаде, то есть выпрямлении, конец нити при отсутствии преграды переместится на такую же величину nkr. В итоге, естественно, длина нити останется прежней, но вся она сдвинется по ходу волны на величину nkr. Соответствующая этому сдвигу часть ее массы равна qnkr, где q- погонная масса нити, кг/м. Таким образом, на этой модели мы фактически наблюдаем сдвиг массы при прохождении гармонической волны. То есть, в этом случае можно говорить о способности гармонической волны переносить массу (подчеркнем, что величина перенесенной массы полностью определяется в процессе волнообразования, а в конец пути движения волны переносится только его результат). Колебания сформировавшейся в гармоническую волну нити будут бесплодными с точки зрения массопереноса: частицы волны будут просто колебаться относительно своих положений равновесия до тех пор, пока волны не распадутся. Подчеркнем еще раз: конец выпрямившейся нити переместится (если нет преграды) на величину nkr.

Если на ось блока, расположенного на правой опоре нити, установить водило с роликом (см. схему рис.1,б) и вращать водило по часовой стрелке, то на нити будет образовываться волна поперечной деформации с меняющимся контуром почти треугольной формы, а блок будет совершать в окружном направлении шаговые движения против часовой стрелки. Груз будет в такт этому подниматься и опускаться, совершая вынужденные гармонические колебания. Заметим, что закон движения груза будет абсолютно идентичным таковому для многих рычажных механизмов, например для ползуна кривошипно – ползунного механизма. Такие же движения будет совершать и пружина, если установить ее вместо груза. По этому принципу работает ряд волновых механизмов на гибких связях.

Шаговые движения на выходном звене можно также получить с помощью описываемого устройства, если вместо толкателя установить кулачок (рис.1,в), при этом на блоке должно быть установлено либо храповое устройство, либо обгонная

муфта (муфта свободного хода), обеспечивающие вращение блока только в одном направлении.

Заметим, что при формировании треугольного контура нити по схеме рис.1,а мы наблюдаем фактически одиночную волну, которая движется в направлении ее распространения, то есть в направлении, перпендикулярном нити. В это время и происходят те перемещения нити (или присоединенного к волне звена,- в данном случае блока и груза), которые обусловлены разницей размеров контура волны и опорной линии- базы волны (в данном случае линии AB). Если волна движется одновременно в перпендикулярном и продольном по отношению к нити направлении (так, как на рис.1, б), то она также переносит в конец своего пути ту избыточную массу (или длину), которую она накопила в себе в процессе своего формирования. Непрерывно меняющийся (по размерам и форме) в процессе такого перемещения контур волны в этом случае определяет и форму кривой приращения длины, несколько отличной от описанной выше.

ЛИТЕРАТУРА

1. Добролюбов А.И. Скольжение, качение, волна. - М: Наука. 1991. - 176с.

УДК 539.3

И.А. Миклашевич

РАЗВИТИЕ НЕУСТОЙЧИВОСТИ ЗОНЫ ВЛИЯНИЯ ТРЕЩИНЫ КАК МЕХАНИЗМ РАССЛОЕНИЯ КОМПОЗИТОВ

Белорусский национальный технический университет Минск, Беларусь

1. ВВЕДЕНИЕ

Развитие трещины отслоения является одной из ведущих причин разрушения слоистых композитных материалов [1, 2]. В то же время физический механизм образования отслоения исследован недостаточно. В определенной мере это связано с тем, что понятие иерархической природы разрушения, вовлекающей в единый процесс механизмы различных структурных уровней, введено в обиход сравнительно недавно [2, 3]. Более или менее ясны общие макроскопические закономерности развития трещины отслоения. Однако микроскопический диапазон, в котором развитие трещины нельзя считать непрерывным, а необходимо учитывать «квантованную» природу процесса разрыва связей в твердом теле [4, 5], исследован не так детально. Соответственно, мезоскопический диапазон, где можно оставаться на уровне описания механики сплошной среды и линейной теории трещин, но при необходимости учитываются процессы, которые реализуются преимущественно на микроскопичесом уровне, исследован также недостаточно детально [2].

Согласно результатам линейной теории упругости напряжения в вершине трещины бесконечны. Естественно, что физически такое состояние реализовываться не может. С точки зрения математики это ведет к поиску уточненных соотношений, не имеющих особенностей в вершине трещины (отход от линейной теории упругости). Экспериментально сингулярности в вершине трещины реализуются как потеря системой устойчивости и бифуркации к новому состоянию. Такой бифуркацией в