не менее важное значение для эффективности работы систем очистки имеет минералогический состав ныли, который спределялся методом рентгено-структурного анализа на установках УРС-50 и ДРОН-1,5. Основными компонентами, входящими в состав ваграночной ныли, являются: Λ – квари, магнетит, гематит, кальцит и доломит. В малых количествах обнаруживаются более сложные соединения типа геленита ($\operatorname{Ca_2Al_2SiO_7}$) и ($\operatorname{Ca}(\operatorname{Al}, \operatorname{MgSi})\operatorname{Si_2O_7}$).

Установлено изменение электрической проводимости разпичных фракций пыли. Так, для равного объема пыли, отобранной из 20-тонной вагранки Минского автомобильного завода,
влектрическое сопротивление увеличивается с 0,2 до 540 0м
при изменении размера фракции от 2,5 до 0,05 мм. Удельный
вес пыли непосредственно связан с ее химическим составом
и оказывает существенное влияние на работу различных аппаратов очистки. Кажущаяся плотность ваграночной пыли, определенная методем гидростатического взвешивания, колебалась
в пределах 1,5 - 3,0 г/см³, причем наиболее плотными являются мелкие фракции.

Таким образом, свойства ваграночной пыли существенным образом зависят от ее фракционного состава, что необходимо учитывать при проектировании систем очистки и расчете параметров работы аппаратов. Так, в частности, выдвыена необходимость применения высоконалорных труб Вентури для умавливания мелкодисперсных фракций пыли с большой удельной поверхностью. В то же время при расчете элег грофильтров спедует учитывать резкое возрастание сопротивления при работе с пылью менее 50 мкм в диаметре. Данные по качественному составу пыли также необходимы для вы бора оптимального режима эксплуатации очистных сооружений.

А.М. Королева, А.П. Филиппович ХИМИЧЕСКИЙ СОСТАВ ВАГРАНОЧНОЙ ПЫЛИ

Изучение химического состава пыли, выделяющейся из плавильных агрегатов, имеет большое значение для выбора эффективного метода пылеулавливания.

В связи с тем, что в литературе приведены противоречивые данные по химическому составу пыли, в данной работе ставипись нель отработать методику и проавализировать химический состав пили, оброзующемся при плавке чугуна в вагранке. Особенно важно систь состав ныли по фрикциям, так как в процессе очистки газов происходит седиментация по тракту в зависимости от экергозатрат в аппаратах дыпеулавливания,

Пыль, отобренная от вагранок растичной мощности, предварительно рассеивалась по фракциям, а затем подвергалась химическому анализу. В состав пыли входят в основном все химические элементы, которые имеются в ысходных шихтовых материелах, а также продукты плавки и соединения, имеющие вторичную природу образовалия.

Исследования показали, что основными компонентами пыли являются углерод, двуокись кремния, окись кальция, окись магния, окись алюминия, закись железа, окись железа, соединения серы и др.

Ивуокись кремния присутствует в ваграночной пыли в больших количествах как в свободном состоянии, так и в виде соединений силикатов, таких как каолин $(H_4Al_2Si_2O_9)$, гелинит $(Ca_2Al_2SiO_7)$, мелилит $(Ca_2(Al_1Mg_*Si_2O_7))$ и других минералов с южного состава. Чтобы определить общее содержание дружиси кремния, необходимо разложить все силикаты, входящие в состав анализируемого материала.

Это осуществляется спеканием гавески пробы с безводным углекислым натрием. Реакции, протексющие при сплавлении или спекании, а также при разложении силикатов, можно представить на примере каолина следующими уравнениями:

$$H_4 H_2 SI_2 O_9 + 3Na_2 CO_3 = 2Na_2 SiO_3 + 2NaAlO_2 + 3CO_2 + 2H_2 O_1$$
 $Na_2 SiO_3 + 2HCl = 2NaCl + H_2 SiO_8$;
 $NaAlO_2 + 4HCl = NaCl + AlCl_3 + 2H_2 O_2$

Содержание углерода определяли объемным вольюмометрическим методом, а количество серы - объемным иодометрическим методом (1). Количество алюминия, входящего в состав пыли в виде окиси (A12O3), находили весовым фосфатным методом. Для особо точных анализов содержание окиси алюминия можно определять оксивым методом (2). Содержание оки-

ния можно определять оксивым методом (2). Содержание окиси кальция и магния установливали весовым методом из одной навески. При этом окись кальция бралась в виде слаборастворимого щавелевокислого кальция, а окись магния – в виде пирофосфатного магния. Для определения закиси марганца иснользовали объемный персульфатный метол. Железо в пыневых выбросах может находиться в следующи видах:

- 1) железо растворимое, т.е. железо растворяющееся в кон центрированной соляной кислоте при нагревании;
- 2) железо общее, т.е. суммарное количество всех видов железа;
- 3) железо закисное, т.е. FeO, которое находится в виде общего закисного железа или только растворимого закисного железа:
- 4) металлическое железо, находящееся в пыли в свободном состоянии:
 - 5) железо окисное трехвалентное (${\rm Fe}_2{\rm O}_3$);
 - 6) магнетит или закись-окись (${\bf Fe}_3{\bf O}_4$).

Закисное, т.е. двухвалентное железо, входящее в состав пыли, определялось пермангонатометрическим методом и титрованием бихроматом после разложения навески пыли с исключением окисления двухвалентного железа в атмосфере СО₂.

В пылевых выбросах сера встречается главным образом в виде гирита и реже в виде сульфатов. Общее содержание серы определялось весовым и объемным методами.

В табт. 1 приведень результаты исследования химического состава основных компонентов пыли от вагранек различной мощности.

Таблица 1

Химические соединения, %										
(C ()	SiO ₂		MgO			A1 ₂ O ₃ + ₄ Fe ₂ O ₃ + +MnO+ ⁴ P ₂ O ₅	Примечани			
18,94				1,25		19,75 19,21	Пыль из им ранки Q=0,2т/чи Пыль из ил ранки Q=3т/чи			
21,41				, 147.3	· •.	17 ,2 5 10,40	Пыль из ил ранки Q =5т/Чл Пыль из ил ранки Q =20г/чи			

143 табл. 1 видно, что наибольшую часть в исследованных образнах пыли составляли углерод и окись кремния, которые однако колеблются в широких пределах в зависимссти от режима плавки, при котором отбирались образцы пыли.

В табл. 2 приведены результаты химического анализа раз-

Таблица 2

Размер фрак-		Химический состав, %									
шин, ме	√1	C	SiO ₂	CaO	Al ₂ O	Mn	reo	8,	A1,0,+ Fe ₂ 0,+	Pe ₂ 0,	
		<u> </u>			<u> </u>	1	1	+12	U5+MT	NU .	
Менее	0,05 •	11,84	22,17	3,69	1,48	0,28	7,16	0,97	8,27	6,79	
	0,05		21,70								
	0,1		48,20								
	0,2	3,05	77 38	0,80	1,22	0,21	7,90	0,061	4,62	3,40	
	0,4	6,52	60,53	0,50	0,75	0,43	28,45	0,14	7,43	6,68	
	1,0	28,12	21,20								

Анализ результатов исследований показывает, что химический состав ваграночной пыли по фракциям неоднороден. Изменяется содержание практически всех ее компонентов, в особенности двуокиси кремния. Максимальное количество последней содержится во фракции 0,2 мм, когорая соответствует используемым в литейном производстве пескам.

Данные химического анализа имеют важное значение при выборе оптимальных систем очистки ваграночных газов и дают представление о маханизме пылеобразования в шахтных печах.

Литература

- 1. Мухина З.С., Никитина И.И. и др. Методы внашав металлов и сплавов. М., Государственное издательство оборонной промышленности, 1969.
- 2. Ляликов Ю.С., Ткаченко Н.С. и др. Анализ железных марганцевых руд и агломератов. М., "Металиургля", 1966.