Табл. 1. Влияние режимов термической обработки на механические свойства сплавов

Режим термической обработ	ки	Сплав			
		A	K5M7	AK1	2MMrH
Закалка	Старение	δ, %	σ _в , МПа	δ, %	$\sigma_{_{ m B}}$, МПа
520 °С, 3 ч	165 °С, 5 ч	0,8	193,1	1,9	211,6
525 → 440 ° С, 10 цик-	165 °С, 5 ч	2	137,2	4	185,2
520 °С, 3 ч	180 	0,4	144,1	3,3	191,1
525 ; ≵440 [°] С, 10 цик- юв	180 ≵ 20 [°] С, 20 циклов	2,8	119,6	5,4	161,7

локаций, способствует улучшению комплекса свойств сплавов (табл. 1).

Анализ данных по механическим свойствам сплавов указывает на возможность повышения их пластичности в 2...2,5 раза при сохранении высоких значений предела прочности путем сочетания различных вариантов ТЦО при закалке и старении.

Термоциклическая обработка отливок из алюминиевых сплавов способствует также выравниванию и снижению уровня остаточных напряжений.

УДК 669.14.018

О.С. КОМАРОВ, канд.техн.наук, Н.И. УРБАНОВИЧ, В.Г. ХОДОСЕВИЧ, канд.техн.наук (БПИ)

ИССЛЕДОВАНИЕ МЕХАНИЧЕСКИХ СВОЙСТВ ВЫСОКОХРОМИСТЫХ ЧУГУНОВ

Отливки из белых чугунов предназначаются для работы в условиях абразивного изнашивания, и поэтому главное требование κ ним — высокая износостойкость.

Процессы разрушения наружного слоя рабочей поверхности детали из белого чугуна, определяющие ее изнашивание, существенно отличаются от процессов разрушения, вызываемых предельными напряжениями в детали. Поэтому стандартные характеристики конструкционной прочности материалов могут давать очень приблизительное представление о пригодности износостойкого чугуна для работы в тех или иных условиях изнашивания [1]. Одна-

Табл. 1. Механические характеристики чугунов

		Содержание, % (по массе)	(по массе)				Механич	Механические свойства	тва	
Марка чугуна	O	Si	Mn	ဝံ	ž	Прочие	прочность на разрыв МПа	Прочие прочность прочность ударная твердость на разрыв, на изгиб, вяз- ${\sf HRC}_3$ МПа ${\sf Koctb},_2$ Дж/см 2	ударная вяз- кость, ₂ Дж/см	твердость НВС _э
ич300Х28Н2	2,7	2,0	0,4	27,8	1,88		270	840	5,5	46
ИЧ280Х17Н3Г3	2,7	6'0	2,4	17,4	3,7		350	530	5,5	57
N4300X18F3CM	3,3	0,43	4,18	17,3	0,2	1 Mo	91	480	3,2	28
M4320X12F3M	3,56	1,43	3,65	11,8	0,2	1 Mo	130	360	ო	45
ич280х30Г3	2,8	0,53	1,96	7,72	0,2		450	920	7,1	47
ич300х18Г3Д2	3,11	0,4	3,6	17,2	0,2	2,1 C	180	460	2,8	46
N4290X12F5	2,8	1,92	4,28	12,14	0,2		250	260	4,1	48
ИЧ300Х17	2,76	96'0	0,64	17,6	0,61	0,4 Mo	330	730	5,2	47
						0,1 Ti				
						0,65 V				

ко от этих характеристик зависят конструктивные решения деталей из белых износостойких чугунов с учетом нагрузок в процессе их эксплуатации, транспортных операций при изготовлении, условий монтажа, возможности работы при циклических и ударно-циклических нагрузках и т.д.

В настоящее время в промышленности применяется большое количество различных марок износостойких высокохромистых чугунов, но обстоятельное сравнительное исследование их свойств не проводилось.

В связи с этим ставилась цель провести исследование механических свойств 6...7 марок чугунов, наиболее часто используемых в промышленности, с тем чтобы в зависимости от условий эксплуатации детали рекомендовать определенную марку чугуна для ее производства.

На основании литературного обзора [1] наиболее перспективными являются марки чугунов, приведенные в табл. 1. В литом состоянии исследовались такие прочностные их характеристики, как прочность на разрыв и изгиб, твердость и ударная вязкость.

Для определения прочности на разрыв и ударной вязкости использовали литые образцы стандартных размеров (ГОСТ 1497—73 и ГОСТ 9454—78). В сухой форме на основе циркониевого концентрата одновременно получали три образца для испытаний на разрыв и пять для определения ударной вязкости. Массивные резервуары по краям образцов обеспечивали не только их питание во время затвердевания, но и промывку полости формы в процессе заливки, что способствовало удалению шлака. Температура заливки составляла 1550 °C. Перед испытанием на ударную вязкость на МК-10 образцы шлифовали до размера 10 X 10 мм в поперечном сечении. Испытания на изгиб осуществляли в соответствии с ГОСТ 14019-80. В качестве исходных были выбраны образцы диаметром 30 и длиной 340 мм. Расстояние между опорами — 300 мм. Форма, в которую заливали металл, состояла из трех частей. Нижняя — металлический поддон — обеспечивала направленную кристаллизацию снизу вверх. Среднюю часть изготавливали из сухой песчано-масляной смеси, а верхняя представляла собой заливочную чашу, обеспечивающую распределение металла по полостям формы. Результаты механических испытаний сведены в табл. 1.

Из приведенных данных следует, что в литом состоянии наиболее высокие механические свойства имеет чугун ИЧ280Х30Г3, который может быть рекомендован для производства таких высоконагруженных деталей, как лопасти дробеметных барабанов. Заменить его можно чугуном марки ИЧ300Х28Н2.

ЛИТЕРАТУРА

1. Цыпин И.И. Белые износостойкие чугуны. — М., 1983. — 174 с.