в остальном теле (X₂ = 150 мм) практически постоянна. Слечем толще стенка кокиля, тем медленнее дует иметь в виду. она охлаждается. Для интенсификации процесса литья предлагается использовать тонкостенные чугунные кокили с принудительным охлаждением внешней поверхности [2]. Для уменьшения тепловых потоков от отливки к форме и предупреждения отбела рабочая поверхность кокиля должна иметь достаточно высокое термическое сопротивление. Это достигается путем нанесения постоянных защитных покрытий. Эксперименты, проведенные в условиях завода, показали, что кокили с алитированной рабочей поверхностью позволяют при использовании модифицирования получать тонкостенные чугунные отливки без отбела.

Литература

1. Вейник А.И. Теория затвердевания отливки. – М.: Машгиз, 1960. – 252 с. 2. Кравченко Е.В., Гурвич Э.А. К выбору оптимального теплового режима металлической формы при циклическом режиме литья. – В сб.: Металлургия. Минск: Вышэйшая школа, 1980, вып. 14, с. 61-62.

УДК 530.1:621.74

А.А.Вейник, инженер (БГУ), А.И.Вейник, чл.-корр. АН БССР

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ТЕРМОЭЛЕКТРИЧЕСКОГО ИЗМЕРИТЕЛЬНОГО ЭЛЕМЕНТА ДЛЯ ЛИТЕЙНОЙ ФОРМЫ

В работах [1, 2] показана возможность изменять – путем соответствующего подбора материалов – теплопроводность и теплоемкость температурного датчика с целью приближения его свойств к свойствам исследуемой литейной формы. Здесь приводятся экспериментальные данные, характеризующие специфические особенности датчика и облегчающие подбор нужных материалов.

Установлено, что термоэлектрические свойства датчика сильно зависят от состояния контактирующих поверхностей. В частности, на величину ЭДС заметно влияют адсорбированные газы и жидкости, чистота поверхностей и т. д. Например, протирка образцов спиртом может уменьшить ЭДС в два и более раз. Адсорбированные вещества хорошо удаляются с помощью вакуума. Поэтому датчик, помещенный под вакуумный колпак, дает значительно более высокую ЭДС, чем датчик, находящийся на открытом воздухе.

5

Из сказанного следует, что для повышения ЭДС и стабильности показаний спаи датчика целесообразно организовывать методом напыления нужных материалов в вакууме. Например. если требуется соединить медную и алюминиевую пластинки, то вначале желательно на контактную поверхность меди напылить тонкий слой алюминия, а затем на поверхность алюминия напылить медь. В результате вакуумного напыления возникает хорошая адгезия [1]. После напыления простое соприкосновение пластин дает надежный контакт, ибо теперь уже соединяются между собой одинаковые по составу поверхности: алюминиевая С алюминиевой, а медная с медной. При этом адсорбция практически перестает влиять на ЭДС по причинам, о которых говорится в данной статье,

Опытные данные приведены в табл. 1. Во всех случаях в качестве эталонных материалов использованы медь и алюминий. В

Материал		Датчик, мкВ			
Сим- вол	Термо- ЭДС, мкВ/К	В ваку- уме	Навоз- духе	На воз- духе*	Примечание
Si	-1773	+0,01	+0,05	-0.20	Пластина КЭФ20; Ø76х0,5 мм;~0 Вт
Si	-1492	+0,01	+0,01	-0,06	КЭФ2; ø35х0,3 мм; схема Cu-V-Si-Al-Cu; 0,01 Вт
Si	-1292	-0,25	+0,08	-0,09	КЭФ0,2; ø60х0,3 мм; 0,018 Вт
Si	-783	-0,03	~0	-0,01	КЭСQ,01; Ø60х0,4 мм; 0,001 Вт
Ge	-669	+0,06	~0	-0,12	Ø30x0,7 мм СииАl не напылены; 0,034 Вт
Si	-546	-0,01	+0,01	-0,08	КЭФ0,005; 53х0,7х7 мм; 0,019 Вт
Bi	-70,7	-4,6	-0,67	-0,11	Литой; 0,035 Вт
Bi	-70,7	-	-	-0,07	Литая фольга; ø14x0,2мм; i =7**: 0,014 Вт
Co	-29,4	-0,23	-0,06	-0,03	0,003 BT nc
Co +S	m –20,3	+0,02	+0,01		Спеченный порошок КС37; 37 % Sm
Ni	-19,7	-0,07	~0	+0,06	0,013 BT
Ta	-0,91	+0,02	~0	-	
Al	-0,6	~0	~0	~0	
Mg	-0,32	+0,04	~0	-	
Y	~0	+0,02	~ 0	-	
С	+0,05	+0,03	~0		
Sn	+0,09	+0,02	+0,01		
Pb	+0,19	+0,04	+0,02	-	
Nb	+0,83	+0,04	~0		
La	+1,53	~0	~0	-	
Cu	+2,34	~0	~0	~()	
v	+2,5	-0,10	~0	-0,06	0,010 BT
W	+3,03	+0,05	+0,01	-	
In	+3,1	+0,03	~0	-	
Zn	+3,37	+0,01	~0	-	
Cd	+4,94	+0,06	~0	-	
Mo	+7,74	+0,46	+0,06	+0,05	0,009 BT
Ce	+10,9	-0,01	~0		•
Fe	+11,9	+0,16	+0,08	+0,08	0,019 Вт

Таблица 1. ЭДС одиночных материалов и датчиков

Материал		Датчик, мкВ			
Сим- вол	Термо- ЭДС, мкВ/К	В ваку- уме	На воз- духе	На воз- духе	Примечание
Fe	-	+0,01	+0,01	+0,05	Порошок; 0,007 Вт
Fe+Bi	_	+0,30	+0,03	+0.11	Схема: Cu-Fe-Bi-Al-Cu: 0.034 Вт
Fe+Bi	-	+2,66	+1,12	-0,06	Схема: Cu-Fe-Al-Bi-Cu; 0,13 Вт
Ti	+12	+0,25	+0,17	~0	
Ti	-	-	-	+0,06	Все слои толщиной 2-3 мкм напылены: i = 7: 0.013 Вт
Ti	_	_	-	+0.12	Φ ольга Ø28x0.1 мм; і = 7: 0.047 Вт
Zr	+12.8	+0.01	~0	-	
Cr	+17.7	+0.26	+0.05	+0.07	0.015 BT
Cr		_	-	-0.14	Все спои напышены: $i = 7.0.065$ Вт
Sb	+50.9	+0.08	-0.02	_	
Te	+617	+2.15	+1.38	-0.79	1.49 BT
Te	_	-4.23	-0.25	-0.29	Порошок: 0.001 Вт
Se	+1000	-1.31	-1.98	-	hopemon, otor bi
Si	+1676	-0,8	+0,8	~0	КДБ10; Ø76х0,4 мм; Си и Al не напылены; ~0 Вт
Si	_	+0,01	+0,01	+0,06	Слой КЭФО,2 толщиной 9 мкм выращен; схема: Си-КПБ10-КЭФО.2-АІ-Си: 0.008 Вт
Si		+0.03	+0.01	~ 0	Схема: Си-КЭФО.2-КЛБ10-А]-Си
Si	_	_		-23100	Лиол плоскостной 2Л201Г 0.007 Вт
Si	_			-381000	$2\Pi 201\Gamma$; i = 21: 0.044 BT
Si	-			-1310	$2\Pi 201\Gamma$; $\Pi C = 21: 0.002 BT$
Si	_	_	_	-360000	Лиол точечный Л106: 0.039 Вт
Si	_			-496000	$\pi 106$ i = 21 · 0.014 Br
Si	_	_		-12900	π_{100} , π_{c} = 21: 0.002 Br
Ge	· _	-1.63	-2.4	-0.35	Лиол плоскостной Д302: 0.015 Вт
Ge	-	_		-500	$\Pi 302$ i = 224: 0.93 BT
Ge				-0.6	$\Pi 302$; $i^{\rm nc} = 224$; 1.1 BT
Ge	-	-875	-556	-43.5	Лиол точечный Л2Ж: 0.075 Вт
Ge		_	-	-10000	$\Pi 2 $; i = 7: 82000 BT ***
Ge	-		-	-25500	Д2Ж; $i_{\rm Hc} = 14$; 75000 Вт
Ge	-	-	-	-36300	$\Pi 2 \mathfrak{K}; i_{mo} = 21; 652 \text{ Br}$
Ge	_	-	_	-13,2	Д2Ж; $i_{} = 7$; 1,79 Вт
Ce		-		-5.2	$\Pi 2 Ж: i_{=}^{\Pi p} 14: 2.13 BT$
Ge	_	_		-5.2	$\Pi 2 $ \mathbf{W} : $\mathbf{i}^{\Pi p} = 21$: 1.96 BT
Ge	_		+70000	-	П2Ж: освещен трехсотваттной лампочкой
GaAs	_	+0.57	-0.76	+0.33	Лиол туннельный АИ201А: 0.326 Вт
Ca A s	_		_	+0.10	$AU201A \cdot i = 7 \cdot 0.022 BT$
Gala		-		10,10	AH201A, $inc = 7, 0,022 B1$
Garis	-	-		70,11	$\frac{1}{100} = 7; 0.052 \text{ DT}$
36	-	±0,04	+0,01	-0,05	диод плоскостнои; 0,007 Вт

^{*} Измерено магнитоэлектрическим зеркальным гальванометром M17/11, при этом выдаваемая датчиком в окружающую среду электрическая мощность умножена на 10¹⁵ и указана в примечании; ^{**}i – число датчиков в цепи, соединенных последовательно (индекс 'пс') или паваллельно (индекс 'пр''), выдаваемая цепью мощность не пропорциональна i; ^{***}при измерениях важно помнить, что ЭДС полупроводниковых диодов, особенно точечных германиевых, претерпевает периодические суточные, годичные и иные изменения на порядок и более под действием космических излучений, а также биополя людей, животных и т.д., проникающего сквозь стенки неметаллической и заземленных медной и стальной бомб, и следовательно, ничего общего не имеющего с электромагнитным полем.

основном датчик содержит три материала, из которых один (Х) испытуемый. Материалы соединены между собой по схеме: Cu--X-Al-Cu. В данном случае медный проводник разорван. в этот разрыв включен измерительный потенциометр типа P348 или P309 чувствительностью 10⁻⁸ В. Правая медная пластина, контактирующая с алюминием, присоединена к положительной клемме потенциометра, левая, контактирующая с испытуемым материалом, - к отрицательной. На пластинки германия и кремния медь и алюминий напылены. Пластинка селена взята из полупроводникового выпрямительного элемента. В остальных случаях контакт является механическим и обеспечивается с помощью специальных зажимов. Площадь контакта примерно равна З см², она несколько больше для германия и кремния, что оговорено в примечаниях табл. 1. Испытания проводились в изотермических условиях в медной калориметрической бомбе диаметром 130, высотой 200 и толщиной стенок 20 мм. Бомба помещена под вакуумный колпак, температура комнатная, давление атмосферное и пониженное до значений $(2-5) \cdot 10^{-5}$ мм рт. ст. В табл. 1 для сравнения приведены данные для одиночных материалов.

Из таблицы видно, что вакуум существенно влияет на ЭДС датчика. Величина ЭДС датчика примерно на два порядка ниже, чем ЭДС одиночных материалов. В этом и заключается OCHOBной недостаток датчика. Однако имеющиеся у него преимущества носят принципиальный характер и значительно перекрывают указанный недостаток [1, 2]. Данные, приведенные в табл. 1, могут быть использованы на практике при выборе датчика, обладающего необходимыми теплопроводностью и теплоемкостью. Полученные в опыте закономерности хорошо интерпретируются с помощью термодинамической теории, изложенной в работе 2. Например, независимость показаний датчика от адсорбции на поверхностях напыленного слоя и соприкасающегося с ним ОДНОименного материала объясняется следующим образом.

Согласно [2], ЭДС датчика определяется в виде суммы скачков потенциала на поверхностях контакта разнородных материалов 1, 2 и 3 (рис. 1, а). При этом в процессе участвуют тончайшие поверхностные слои х, равные нескольким диаметрам атомов или молекул. Адсорбированные вещества располагаются на этих поверхностях и сильно изменяют их термодинамические свойства. Именно поэтому в общем случае адсорбция резко влияет на ЭДС. Однако если на поверхность данного вещества напылить слой другого, с которым должно соприкасаться данное, то получится схема, изображенная на рис. 1, б. В этих условиях

8

суммарная ЭДС

 $\begin{array}{c} V = f_{12} - f_{21} + f_{21} - f_{12} + f_{13} - f_{31} + f_{34} - f_{43} + \\ + f_{41} - f_{14} = f_{13} - f_{31} + f_{34} - f_{43} + f_{41} - f_{14}, \end{array}$

где, как и в работе [2], потенциал V является функцией f от температуры T, причем первый индекс соответствует номеру данной пластины, а второй – номеру пластины, с которой соприкасается данная. В рассматриваемом примере роль адсорбированного слоя играет материал 2, который расположен симметрично по отношению к двум одинаковым материалам 1, поэтому из рассмотрения он выпадает и на ЭДС влияния оказать не может. Такая же картина получается при разрыве медного проводника и включении в него прибора, который тоже играет роль материала 2. Аналогичная ситуация имеет место и при большем числе симметрично расположенных проводников. Например, в схеме на рис. 1, в из рассмотрения выпадают материалы 2 и 3. Вместе с тем в цепи из тех же проводников, но соединенных несимметрично (рис. 1, г), не выпадает ни один из материалов.

Сравнительно малая ЭДС цепи обусловлена следующими причинами. У всех идеальных тел функция f имеет одинаковые значения. Например, в уравнении состояния Друде - Лоренца одинаковыми оказываются коэффициенты пропорциональности, связывающие давление электронного газа в металле, а следовательно, и потенциал V, с температурой Т. У реальных тел функции f заметно отличаются друг от друга. На рис. 1,д они изображены сплошными линиями. Это различие приводит к появлению разностей потенциалов (ЭДС) между разнородными одиночными материалами. На рис. 1, д значения для трех таких материалов обозначены буквенными индексами А, В и С, а разности двойными индексами АВ, ВС и СА. Следовательно, ЭДС одиночных материалов представляют собой величины первого порядка V. малости по сравнению со значениями самих потенциалов

Наличие взаимного влияния веществ в зоне контакта несколько изменяет функции f. На рис. 1, д они изображены штриховыми линиями и обозначены двойными цифровыми индексами. Разница между сплошными и штриховыми линиями отражает взаимодействие веществ, она характеризует разности между разностями потенциалов. Следовательно, ЭДС элемента представляют собой величины второго порядка малости по сравнению с функциями f. Например, для тройной цепи ЭДС (рис. 1, а)

 $\begin{array}{l} V = f_{12} - f_{21} + f_{23} - f_{32} + f_{31} - f_{13}. \\ \text{Это равносильно следующей разности отрезков:} \\ V = \left[(f_{12} - f_{13}) + (f_{31} - f_{32}) \right] - (f_{21} - f_{23}). \end{array}$

Соответствующие отрезки на рис. 1, д отмечены тройными вертикальными прямыми, что очень наглядно иллюстрирует высказанную мысль. Если учесть взаимное влияние основного материала с его поверхностным слоем х, то можно найти еще одну поправку – уже третьего порядка малости, и т. д.

В заключение отметим, что в элементе в спаях происходит поглощение и выделение теплоты Пельтье, а в проводниках – поглощение и выделение теплоты Томсона и выделение теплоты Джоуля. Фактическая теплота Пельтье соответствует разностям, обозначенным цифровыми индексами (рис. 1, д), и равна произ-

Рис. 1. Схема, поясняющая физический механизм возникновения ЭДС в изотермических условиях.

ведению этих разностей на силу тока. Алгебраическая сумма теплот Пельтье и Томсона равна и противоположна по знаку суммарной джоулевой теплоте. Этим балансом обеспечивается равновесие системы и окружающей среды в условиях циркуляции заряда.

Литература

1. Вейник А.А., Вейник А.И. Измерение температуры литейной формы с помощью полупроводникового термоэлектрического элемента. - В сб.: Металлургия. Минск: Вышэйшая школа, вып. 16, 1981, с. 113-115. 2. Вейник А.А., Вейник А.И. О некоторых свойствах термоизмерительного элемента для литейной формы. - В сб.: Металлургия. Минск: Вышэйшая школа, вып. 16, 1981, с. 117-119.