С.М.Красневский, Е.М.Макушок, докт. техн. наук, В.Я.Шукин, канд. техн. наук (АН БССР)

ИССЛЕДОВАНИЕ ВОССТАНОВЛЕНИЯ ПЛАСТИЧНОСТИ В ПРОЦЕССЕ ОТЖИГА

Нами было исследовано восстановление запаса пластичности стали 45, которая подвергалась холодной деформации и последующему отжигу. Из опытного прутка изготавливались образцы для определения пластичности методом поперечной прокатки. Экспериментально была построена кривая зависимости циклов до разрушения при поперечной прокатке N_{p} от обжатия образца δ . Методика проведения экспериментов следующей. Выбирались две степени обжатия δ_1 и δ_2 . этих степенях обжатия прокатывались партии образцов с личной заданной степенью использования запаса пластичности. задаваемой количеством числа циклов нагружения, после образец вынимался из установки для поперечной прокатки. Степень использования запаса пластичности определялась как отношение числа циклов нагружения образца $N_{1\,i}$ к числу циклов нагружения образца $N_{\rm p}$ до разрушения при одной и той же степени обжатия:

 $\Psi_{1i} = \frac{N_{1i}}{N_p} \,. \tag{1}$

Прокатанные образцы с различными степенями использования запаса пластичности отжигали в вакуумной электропечи типа СШВА при температуре отжига $T=800^{\circ}$ С и время отжига варьировали от $\tau=0.5$ ч до $\tau=3$ ч. Время выдержки в печи фиксировали с момента набора температуры в печном пространстве и варьирования температуры по сечению образца до момента отключения нагревательных устройств. Время нагрева печи до заданной температуры и время охлаждения образцов составляло одинаковую величину для всех образцов и было равно 20 мин.

После отжига образцы подвергались поперечной прокатке до момента разрушения при той же степени обжатия, при которой они прокатывались до отжига. Величину $\Delta \Psi$, характеризующую восстановление запаса пластичности после отжига, определяли следующим образом.

Зная величину накопленной пластической деформации при по-

перечной прокатке до отжига Λ_1 и предельную степень накопленной деформации к моменту разрушения при том же показателе напряженного состояния $\Lambda_{\rm пр}$, после отжига определяем остаточный запас пластичности в образце к моменту разрушения Λ_2 . Обозначив через $\Delta\Lambda$ восстановленный запас пластичности после отжига, приходим к равенству [1]

$$\Lambda_1 + \Lambda_2 = \Lambda_{\pi p} + \Delta \Lambda . \tag{2}$$

Разделив все члены уравнения (2) на $\Lambda_{\rm пр}$, получим уравнение для определения восстановленного запаса пластичности после отжига

$$\Delta^{\Psi} = \Psi_1 + \Psi_2 - 1, \tag{3}$$

где $\psi_1 = \frac{\Lambda_1}{\Lambda_{np}} = \frac{N_{1i}}{N_p}$ — степень использования запаса плас-

тичности при прокатке образцов до отжига; $\Psi_2 = \frac{\Lambda_2}{\Lambda_{\text{пр}}} = \frac{N_{2i}}{N_{\text{p}}}$

относительный запас пластичности образцов после отжига; N_{2i} — число эциклов до разрушения при поперечной прокатке образцов после отжига.

На рис. 1 приведены экспериментальные данные, характеризующие восстановление запаса пластичности после отжига. Тем-

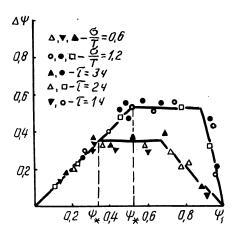


Рис. 1. Восстановление пластичности после отжига в зависимости от степени использования запаса пластичности при поперечной прокатке.

пература отжига была принята $T=800^{\circ}$ С. Время отжига варьировалось от $\tau=1$ ч до $\tau=3$ ч. В качестве исходной пластичности принималась предельная пластичность образцов, отожженных при температуре $T=800^{\circ}$ С и времени $\tau=2$ ч.

Из рис. 1 видно, что время отжига при изменении от τ = 1 ч до τ = 3 ч не оказывает существенного влияния на вос-

становление запаса пластичности. Из экспериментальных данных следует, что при определенных условиях существует оптимальная степень деформации Ψ_{χ} , которой соответствует полное восстановление запаса пластичности при отжиге, т.е. при предварительных степенях деформации $\Psi = \Psi_{\chi}$ образуются такие микроповреждения, которые полностью залечиваются при восстановительном отжиге.

Экспериментально установлено, что показатель напряженного состояния влияет на критическую степень деформации Ψ_{\star} . Так, при $\frac{\sigma}{T}$ = 0,6 имеем Ψ_{\star} \cong 0,33–0,35, а при $\frac{\sigma}{T}$ = 1,2 видно, что Ψ_{\star} \cong 0,5–0,53.

УДК 621.91.01

Д.И.Дмитрович, Т.В.Калиновская, канд. техн. наук, А.С.Масаковская, канд. техн. наук (ФТИ АН БССР)

ИССЛЕДОВАНИЕ НАПРЯЖЕННОГО СОСТОЯНИЯ НА НАЧАЛЬНОЙ СТАДИИ СРЕЗА СТРУЖКИ

В работе приведены результаты исследования напряженного состояния начальной стадии среза стружки, вычисленного по деформированному, с использованием уравнений связи между напряженным и деформированным состояниями, вытекающих из аппроксимации поведения реальных материалов моделью Леви-Мизеса. Исходными данными являлись компоненты тензора скоростей деформаций $\xi_{i\,i}$ и интенсивность скоростей деформации H_i [1]. Предел текучести на сдвиг вычисляли по формуле степенного упрочнения

 $\kappa = A(H_i)^n$

Такая кривая упрочнения характерна для свинца, используемого в качестве модельного материала. При этом относительный предел текучести изменялся от О в недеформированной области до 1 в области наибольшей интенсивности скоростей деформации H_i .

При плоском деформированном состоянии напряжения и скорости деформаций исходя из принятой модели тела связаны следующим образом:

$$\sigma_{x} - \sigma_{y} = \frac{4\kappa}{H_{i}} \xi_{x}; \quad \tau_{xy} = \frac{\kappa}{H_{i}} \eta_{xy}. \tag{1}$$