ностной зоне. Из-за высокой устойчивости хромистого аустенита чугуны с указанными добавками имеют более высокую твердость сравнительно с другими исследуемыми сплавами. При малой добавке хрома (0,1%) в узкой (0,7 мм) поверхностной зоне практически отсутствует отбел. Зона междендритного графита развита слабо. Твердость по сечению образцов сравнительно одинакова и соответствует 90-84 HRB.

В заключение следует отметить, что результаты исследования имеют в первую очередь сравнительный характер и позволяют оценить качественное и количественное влияние легирующих добавок. В реальных условиях уменьшение интенсивности охлаждения при образовании газового зазора в кристаллизаторе и последующий разогрев наружных слоев отливки за пределами кристаллизатора до температур 1000-1100°С позволяет полностью ликвидировать отбел даже при наличии в чугуне карбидообразующих элементов.

УДК 621.01

О.С.Комаров, канд. техн. наук (БПИ)

МЕТОДИКА РАСЧЕТА СТРУКТУРЫ КОКИЛЬНЫХ ОТЛИВОК ИЗ СЕРОГО ЧУГУНА

При разработке методики расчета изменения структуры по сечению отливок из серого чугуна, полученных в металлические формы, приняты следующие допущения: заливку формы считали мгновенной, предполагалось отсутствие корки отбела на поверхности отливки, отливка имеет форму плиты, размеры которой позволяют исключить влияние торцов, образование воздушного зазора между затвердевающей отливкой и формой не учитывали.

Разбивка на отдельные периоды приведена на рис. 1.

В ходе первого и второго (рис. 1, а, б) периодов температура прилегающего к форме слоя снижается вначале до температуры зарождения аустенита T_a, а затем аустенитно-графитной (А-Г) эвтектики T_э. В третьем периоде (рис. 1, в) она достигает температуры площадки кристаллизации, а в четвертом – заканчивается кристаллизация в этом слое (рис. 1, г). В пятом периоде (рис. 1, д) параллельно с ростом твердой корки наблюдается продвижение фронта охлаждения к центру отливки. В шестом – температура центральной зоны достигает Т_а (рис. 1, е). В седьмом – фронт кристаллизации аустенита продвигается к

106

Рис. 1. Распределение температур в отливке для различных периодов кристаллизации.

центру (рис. 1, ж). В восьмом – температура центра снижается до Т_Э. В девятом – температура центра выходит на площадку кристаллизации эвтектики и в десятом – завершается рост А-Г колоний в центральной зоне отливки. Для трех последних периодов распределение температур на рис. 1 не показано.

На рис. 1 приняты обозначения: I – охлаждаемый расплав; II – зона кристаллизации аустенита; III – зона зарождения А-Г колоний; III – зона кристаллизации А-Г эвтектики; IV – твердая корка; V – форма.

Уравнение теплового баланса для четвертого периода включает следующие компоненты:

$$dQ_{5} = dQ_{39} + dQ_{3ak} + dQ_{3'ak} + dQ_{39} + dQ_{2a} + dQ_{2ak} + dQ_{1}.$$
(1)

Это уравнение может быть приспособлено к каждому из периодов путем исключения соответствующих составляющих. В уравнении цифровые индексы указывают, к какой зоне относится составляющая; э – эвтектика; а – аустенит; ак – аккумулированная (физическая) теплота; dQ₁ – теплота, проводимая через зону I за счет разности температур; dQ₅ – отводимая формой теплота:

$$dQ_{1} = \lambda_{1\Rightarrow\phi} h \frac{T_{0} - T_{\pi}}{x_{1}} F dt.$$
 (2)

Здесь $T_{0} - T_{\Pi} = \frac{T_{0} - T_{05}}{1 + h\lambda_{120}/4x_{1}},$

где λ_{1эф} – эффективная теплопроводность расплава, учитывающая наличие конвективных потоков; h – показатель степени параболы; T₀₅ – начальная температура формы; *Δ* – коэффициенты теплопередачи; t – время; F – площадь плиты; T₀ – начальная температура расплава; T_п – температура расплава вблизи поверхности отливка – форма,

$$dQ_{1ak} = \frac{1}{h+1} F \rho_1 c_1 (T_0 - T_{05}) \frac{\frac{1 + 2h\lambda_1}{4X_1}}{(1 + h\lambda_1 / 4X_1)^2} dX; \quad (3)$$

$$dQ_{5} = \frac{Fb_{5}(T_{\pi} - T_{05})dt}{\sqrt{\pi t}},$$
 (4)

где ho и с – плотность и удельная теплоемкость; b₅ – коэффициент тепловой активности формы. Составляющая dQ_{2ak} рассчитывается по формуле, аналогичной (3), но вместо ($T_0 - T_{05}$) необходимо подставить ($T_0 - T_{\Pi}$) и вместо $X_1 - X_2$. Для второго-пятого периодов dQ_1 находится по (2), но $T_0 - T_{\Pi}$ следует заменить на $T_0 - T_a$, а $X_1 -$ на ($X_1 - X_2$). В шестом периоде температура расплава снижается в интервале $T_0 - T_a$. В связи с этим

$$dQ_{1} = F\rho_{1}c_{1}\frac{a_{3\phi}}{X_{0}^{2}}(T_{0} - T_{a})e^{-(h+1)(Fo-Fo_{5})}(x_{0} - (5))$$

- x_{2}) dt - $F\rho_{1}c_{1}\frac{1}{h+1}(T_{0} - T_{2})e^{-(h+1)(Fo-Fo_{5})}dX_{2}$

где а_{эф} – эффективный коэффициент температуропроводности; Fo – критерий Фурье (безразмерное время).

Для второго периода d Q_{2a} можно найти по формуле

$$dQ_{2a} = \frac{FL_2 \rho_2 (T_a - T_{05})}{(h+1)(1+h\lambda_1/\alpha X_2)} \left[\frac{\Psi}{T_a - T_9} + \frac{(1+2h\lambda_1/\alpha X_2)}{(1+h\lambda_1/\alpha X_2)^2} \right] dX_2,$$
(6)

где Ψ – относительное количество твердой фазы при любой температуре в интервале $T_a - T_{9}$; $\nu = \frac{d\Psi}{dT}$ – темп кристаллизации, характеризующий неравномерность выделения аустенита в интервале $T_a - T_{9}$.

Начиная с третьего периода удобно объединять вместе dQ_{2a} и dQ_{2ak} и рассчитывать их сумму, используя с_{эф} – эффективную теплоемкость, учитывающую теплоту кристаллизации аустенита

$$dQ_{2a} + dQ_{2ak} = \frac{F\rho_2 C_{3\phi}}{h+1} [T_a - T_3 + \frac{1}{h+1} (T_3 - T_{\pi})]d \times (T_3)$$

В третьем периоде в зоне III появляется A-Г эвтектика $dQ_{3'} = FL_{3}\rho_{3}X_{3'}dV_{3} + FL_{3}\rho_{3}V_{3}dX_{3'}.$ (8)

Удельный объем, занимаемый эвтектикой V_Э, может быть найден на основании уравнений кинетической теории кристаллизации

 $V_{g} = \frac{4}{3}\pi N_{o} (dr/dt)^{3}t^{3} + 1 - \exp\left[\frac{\pi}{3}n_{cp} (dr/dt)^{3}t^{4}\right], \quad (9)$ где N_o - число готовых центров кристаллизации; n_{cp} - средняя

скорость зарождения новых центров; dr/dt – скорость роста ячеек эвтектики.

Средняя по объему переохлажденного относительно Т расплава скорость роста

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\mathbf{t}} = \mu \left| \sqrt{\frac{\lambda_1 (\mathrm{T}_{\vartheta} - \mathrm{T}_{3' \mathrm{cp}})}{2 \,\mathrm{L}_{\vartheta} \rho_{\vartheta} \mathrm{t}}}, \right|$$
(10)

где $\mu = \frac{T_p - T_M}{T_9 - T_M}$ - коэффициент, учитывающий снижение температуры расплава T_p , вызванное замедлением роста А-Г ячеек в связи с наличием в расплаве примесей.

Так как концентрация примесей возрастает с уменьшением коэффициента распределения K_D и скорости ее диффузии D, а также с увеличением скорости роста ячеек, то с физической точки эрения K_D D (11)

$$\mu = B \frac{1}{1 - K_0} \frac{1}{dr/dt}, \qquad (11)$$

где В - коэффициент пропорциональности.

Величина n_{ср}, входящая в (9), зависит от среднего значения переохлаждения в зоне Ш

$$n_{cp} = n^* (\Delta T_{3'cp})^S,$$
 (12)

где S – показатель степени; n^{*} – удельная скорость зарождения при переохлаждении на один градус

$$\Delta T_{3'cp} = T_{3} - T_{3'cp} = \frac{1}{h+1} (T_{3} - T_{\pi}) = \frac{T_{3} - T_{05}}{(h+1)(1+h\lambda_{1}/\alpha X_{3'})}.$$
(13)

Для четвертого-восьмого периодов

$$\Delta T_{3'cp} = \frac{1}{h+1} \left[T_{3} - (1 - \mu) (T_{3} - T_{M}) \right]; \qquad (14)$$

 $dQ_{3'ak}$ для третьего периода может быть рассчитана по формуле $dQ_{3'ak} = F\rho_1 c_1 X_{3'} d(\Delta T_{3'cp}) + F\rho_1 c_1 (\Delta T_{3'cp}) dX_{3'}$. (15)

В последующие периоды

 $dQ_{3'ak} = \frac{1}{h+1} F \rho_1 c_1 [T_{-} (1-\mu)(T_{9} - T_{M})] d(X_{3'} - X_{3}).$ (16) Начиная с четвертого периода в уравнение теплового баланса входит dQ_{39} , которая может быть рассчитана поформуле, сходной с (8), но в выражение для расчета dr/dt (10) вместо $T_9 - T_{3'cp}$ следует подставить $T_9 - (1 - \mu)(T_9 - T_M)$. Кроме того, начиная с пятого периода необходимо скорректировать выражение (12) для расчета средней скорости зарождения центров кристаллизации. На рис. 2 схематически показано распределение температур для некоторых последовательно возрастающих моментов времени t' < t" < t". Условно принят прямолинейный характер изменения температуры в зоне III. В слое, удаленном от границы отливка – форма на расстояние X₃, в момент t" наблюдается максимальное переохлаждение. Независимо от характера

Рис. 2. Схема к расчету продолжительности зарождения ячеек.

связи скорости зарождения с переохлаждением эта величина максимального переохлаждения будет определять результирующее число ячеек в рассматриваемом слое отливки. Из геометрических соотношений схемы получим

$$tg = \frac{X_2 - X_3}{T_a - T_9 + \Delta T} \approx \frac{X_2 - X_3}{T_a - T_9}.$$
 (17)

Тогда время зарождения

$$t^* = \frac{\Delta T tg \, \alpha}{dX_2/dt} \,. \tag{18}$$

Принимая в (12) S = 2, получим для пятого – седьмого периодов $x^*(T = T)^3(1 = x)^3(X = X)$

$$N = N_{o} + \frac{n (T_{g} - T_{M}) (T - \mu) (X_{2} - X_{3})}{2[T_{a} - T_{g} + (1 - \mu) (T_{g} - T_{M})] dX_{3}/dt} .$$
 (19)

Для восьмого периода

$$t^{*} = \frac{(T_{9} - T_{M})(1 - \mu)(X_{0} - X_{3})}{(20)}$$

$$= (h+1)(F_0 - F_0_7) [(T_a - T_g)e + (1 - \mu)(T_g - T_M)]dX_3/dt$$

Во все последующие периоды начиная с пятого

 $dQ_{3ak} = \frac{1}{h+1} F \rho_1 c_1 (1 - \mu) (T_9 - T_M) dX_3.$ (21) В четвертом периоде $X_4 = 0.$

В уравнениях теплового баланса для пятого – десятого периодов присутствует dQ₄:

$$dQ_{4} = \frac{1}{h+1} F \rho_{4} c_{4} [T_{9} - (1 - \mu)(T_{9} - T_{M} - T_{05}] x$$

$$x \frac{1 + 2h\lambda_{4}/4X_{4}}{(1 + h\lambda_{4}/4X_{4})^{2}} \cdot dX_{4}.$$
(22)

В девятом периоде температура центра отливки снижается от T_{\Im} до величины $(1 - \mu)(T_{\Im} - T_{M})$. Пренебрегая тепловым эффектом роста готовых центров кристаллизации в начальный период их развития, можно определить изменение во времени температуры центра (T_{u}) :

Fo - Fo₈ =
$$\frac{1}{h+1}$$
 ln $\frac{(1-\mu)(T_9 - T_M)}{T_{II} - T_9 + (1-\mu)(T_9 - T_M)}$. (23)

Принимая значение T_{μ} близким к $T_{9} - (1 - \mu)(T_{9} - T_{M})$, находим продолжительность девятого периода и от нее переходим к расчету числа центров кристаллизации и dQ_{39} .

Дополнительные уравнения, необходимые для исключения из уравнений теплового баланса лишних переменных X₂, X₃' и X₄, можно составить исходя из равенства тепловых потоков на границе смежных зон. Предлагаемый вариант решений не учитывает изменения распределения температур в зоне 1 вследствие выделения аустенита. При желании решения можно уточнить путем составления дополнительных уравнений теплопроводности в зоне 1 для каждого из периодов.

В конечном итоге структура чугунных отливок определяется числом А-Г ячеек и скоростью их роста в рассматриваемом сечении отливки. Разбивая отливку на ряд плоскопараллельных сечений, можно для каждого из них установить N и на основании разности времени подхода к ним зоны III и зоны IV найти продолжительность и среднюю скорость роста ячеек. В дальнейшем, используя решения Тиллера, можно перейти от скорости роста к частоте ветвления графитного скелета, т. е. к структуре чугунных отливок.