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Modern multi-core processors, operating systems and applied software are being designed towards energy 
efficiency, which significantly reduces energy consumption. Energy efficiency of software depends on algorithms it 
implements, and, on the way, it exploits hardware resources. In the paper, we consider sequential and parallel im-
plementations of four algorithms of shortest paths search in dense weighted graphs, measure and analyze their runt-
ime, energy consumption, performance states and operating frequency of the Intel Core i7-10700 8-core processor. 
Our goal is to find out how each of the algorithms influences the processor energy consumption, how the processor 
and operating system analyze the workload and take actions to increase or reduce operating frequency and to dis-
able cores, and which algorithms are preferable for exploiting in sequential and parallel modes. The graph exten-
sion-based algorithm (GEA) appeared to be the most energy efficient among algorithms implemented sequentially. 
The classical Floyd-Warshall algorithm (FW) consumed up to twice as much energy, and the blocked homogeneous 
(BFW) and heterogeneous (HBFW) algorithms consumed up to 52.2 % and 21.2 % more energy than GEA. Parallel 
implementations of BFW and HBFW are faster by up to 4.41 times and more energy efficient by up to 3.23 times than 
the parallel implementation of FW and consume less energy by up to 2.22 times than their sequential counterparts. 
The sequential GEA algorithm consumes less energy than the parallel FW, although it loses FW in runtime. The mul-
ti-core processor runs FW with an average frequency of 4235 MHz and runs BFW and HBFW with lower frequency 
of 4059 MHz and 4035 MHz respectively. 

Keywords: multi-core processor, shortest paths algorithm, single-thread application, multi-threaded applica-
tion, runtime, energy consumption, OpenMP

Introduction

Multi-core CPUs are at the heart of modern 
computing platforms whose share of the total energy 
consumption is rapidly increasing. The energy 
consumption of computing systems and devices accounts 
for 20% of the global electricity demand [1, 2], and the 
prediction is up to 50% of global electricity in 2030. 
A model for estimating with high accuracy the power 
consumption of multi-core processors is presented in [3]. 

Power management is one of the most critical 
issues in the design of today’s microprocessors [4, 5]. Its 
goal is to maximize performance within a given power 
budget. Power management techniques must balance 
between the demanding needs for higher performance 
and the impact of aggressive power consumption and 
negative thermal effects. The most adopted power saving 
technique for current multi-core processors is the ability 
of dynamic frequency tuning which is based on Dynamic 
Voltage and Frequency Scaling (DVFS). Many studies 
use DVFS to adjust the frequency of processor cores, 
and to save power. They are classified into two groups: 
profiling and performance monitors. The profiling 
techniques measure the behaviors of applications and 
analyze the obtained results to tune the frequency of 
processors. The hardware performance monitors collect 
information about CPU usages in run-time and then tune 
the frequency of multi-core processor to save power 
without significant overhead. 

Energy consumption can also be decreased by 
optimizing machine code and creating green software. 
The contribution of this paper is a methodology of 
developing and selecting applied algorithms (on example 
of shortest paths algorithms) which significantly reduce 
the energy consumption and increase performances. 

All pairs shortest path algorithms

Let G = (V, E) be a simple directed dense graph 
with real edge-weights consisting of a set V, |V| = N, of 
vertices numbered 1 through N and a set E of edges. Let W 
be a cost adjacency matrix for G. So, w(i, i) = 0, 1 ≤ I ≤ N; 
w(i, j) is the cost (weight) of edge (i, j) if (i, j) ∈ E and 
w(i, j) = ∞ if i ≠ j and (i, j) ∉ E. Let consider the problem 
and algorithms of shortest paths search in graph G.

Floyd-Warshall algorithm (FW). Let D be a 
matrix of distances and element D(i, j) be a length of 
a shortest path from i to j. Let SP(i, j, k) be a function 
that returns the length of the shortest path from i to j 
passing through vertices from set {1, 2 … k}. The goal 
of FW [6–8] is to find SP(i, j, N), i, j = 1 … N. If we have  
SP(i, j, k–1), then SP(i, j, k) can be defined recursively:

SP(i, j, k) = min(SP(i, j, k–1), 

                    SP(i, k, k–1) + SP(k, j, k–1)),        (1)

with the base case SP(i, j, 0) = w(i, j). The FW 
algorithm is derived from definition (1): 
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D ← W
for k ∈ {1…N}} {

for i, j ∈ {1…N}} {
D(i, j) ← min (D(i, j), D(i, j) + D(i, j))

}}

The FW algorithm has the same computational 
complexity of Θ(|V|3) no matter how many edges the graph 
contains. An advantage of the algorithm is its simplicity 
in the organization of computations. Its drawback is 
the recalculation of all elements of matrix D in every 
iteration of the loop along k. FW can be parallelised by 
OpenMP. An alternative to FW is proposed in [9].

Graph extension-based algorithm (GEA). The 
algorithm was proposed in [10, 11]. In GEA, the process 
of calculating the shortest paths is associated with 
stepwise adding of vertices to graph G. Therefore, the 
shortest path distances are represented by a sequence of 
matrices D[1×1] … D[(k–1)×(k–1)], D[k×k] … D[N×N]. 
GEA uses two operations: 1) adding row k and column k 
to matrix D[(k–1)×(k–1)] with obtaining matrix D[k×k]; 
2) updating matrix D[(k–1)×(k–1)] over row k and 
column k. These operations are described as:

D ← W
for k ∈ {1…N} { 

for i, j ∈  {1…N} { 
D(i, k) ← min (D(i, k), D(i, j) + D(j, k)) 
D(k, j) ← min (D(k, j), D(k, i) + D(i, j)) 

}
for i, j ∈ {1…N} { 

D(i, j) ← min (D(i, j), D(i, k) + D(k, j)) 
}}

Then the obtained algorithm is formally 
transformed to a more efficient one using the inference 
technique proposed in [10, 11]. The transformation rules 
of the resynchronization of computations, reordering of 
instructions and merging of loops are used to do it. The 
following algorithm, GEA is a result of the transformation:

D ← W
for k ∈ {2…N} {

r ← k–1
for i, j ∈ {1…r} {

D(i, j) ← min (D(i, j), D(i, r) + D(r, j)) 
D(i, k) ← min (D(i, k), D(i, j) + D(j, k)) 
D(k, j) ← min (D(k, j), D(k, i) + D(i, j)) 

}}
for i, j ∈ {1…N–1} { 

D(i, j) ← min (D(i, j), D(i, N) + D(N, j)) 
}

GEA has smaller number of iterations of loops 
along variables i and j, has fewer accesses to memory 
and has the improved spatial and temporal data 
references locality. Therefore, it can reduce the cache 
pressure in the multi-core processor and can speed up 
the computations. 

Blocked FW algorithm (BFW). It was proposed in 
[12–18] as a further development of FW. BFW divides 
set V of graph vertices into subsets V1…VM of size S and 
splits matrix D into blocks of size S × S each, creating 
a block-matrix B[M × M], where equality M∙S = N holds. 
The blocks are recalculated in a loop along block count 
m = 1…M. Three phases are used for the recalculation:  
1) calculation of a diagonal D0 block Bm, m; 2) calculation 
of 2(M–1) cross blocks Bv,m and Bm,v of types C1 and C2; 
calculation of (M–1)2 peripheral blocks of type P3. BFW 
is described by the following pseudocode: 

B ← W
for m ∈ {1…M} { 

Bm,m ← BCA (Bm,m  , Bm,m , Bm,m )          // D0
for v ∈ {1…M} and v ≠ m { 

Bv, m  ← BCA (Bv,m , Bv,m , Bm,m  )      // C1
Bm, v ← BCA (Bm,v  , Bm,m , Bm,v  )       // C2

}
for v, u ∈ {1…M} and v ≠ m and u ≠ m { 

Bv,u  ← BCA (Bv,u  , Bv,m  , Bm,u  )        // P3
}}

Single function BCA calculates all types of blocks:

BCA (B1, B2, B3) {
for k, i, j ∈ {1…S} {

B1(i, j) ← min (B1(i, j), B2(i, k) + B3(k, j)) 
}}

Advantages of BFW are: 1) the localization of 
data accesses within blocks and increasing the efficiency 
of hierarchical memory operation; 2) the capability of 
parallel computation of blocks on multi-core processors. 
BFW can be parallelised by OpenMP in fork-join style. 
Cooperative threaded algorithms [19–21] are based on 
BFW.

Heterogeneous blocked FW algorithm (HBFW). 
The algorithm was proposed in [11, 22]. It inherits 
BFW and distinguishes four types of blocks: diagonal 
D0, vertical C1 of cross, horizontal C2 of cross, and 
peripheral P3. For each block type it provides a separate 
block calculation algorithm of higher performance. The 
separate algorithms account the features of block types. 
They allow the reduction of the number of iterations in 
nested loops, the exploit of sequential references locality 
of data in CPU caches, and the speedup of computations. 
All the separate algorithms improve the spatial and 
temporal reference locality in data processing. After 
replacing in BFW four calls of function BCA with calls 
of four separate functions D0, C1, C2 and P3 using 1, 2, 
2 and 3 unique arguments, we obtain a heterogeneous 
HBFW:

B ← W
for m ∈ {1…M} { 

Bm,m ← D0 (Bm, m )
for v ∈ {1…M} and v ≠ m { 

Bv,m  ← C1 (Bv,m , Bm,m )
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Bm,v ← C2 (Bm,v , Bm,m ) }
for v, u ∈ {1…M} and v ≠ m and u ≠ m { 

Bv,u  ← P3 (Bv,u , Bv,m , Bm,u ) }
}

Function D0 implements the GEA algorithm 
applied to block B1. Function C1 is inferred by applying 
the stepwise graph extension concept to block B1 
calculated over block B3 [22]:

C1 (B1, B3) {
for k ← 2…S {r ← k–1

for i ← 1…S {
for j ← 1…r {

B1(i, j) ← min (B1(i, j), B1(i, r) + B3(r, j))
B1(i, k) ← min (B1(i, k), B1(i, j) + B3(j, k))

}}}
for i, j ← 1…S–1 { 

B1(i, j) ← min (B1(i, j), B1(i, S) + B3(S, j)) }
}}

Function C2 is inferred in a similar way by 
applying the stepwise graph extension concept to block 
B1 calculated over block B2 [22]:

C2 (B1, B2) {
for k ← 2…S {r ← k–1

for i ← 1…r {
for j ← 1…S {

B1(i, j) ← min (B1(i, j), B2(i, r) + B1(r, j))
B1(k, j) ← min (B1(k, j), B2(k, i) + B1(i, j))

}}}
for i, j ← 1…S–1 { 

B1(i, j) ← min (B1(i, j), B2(i, S) + B1(S, j)) 
}}

Function P3 is inferred from BCA by reordering 
loops. All four functions improve the spatial and temporal 
data references locality and make the hierarchical 
memory operation more efficient. Moreover, functions 
D0, C1 and C2 reduce the number of iterations in loops 
and the number of accesses to main memory. HBFW can 
be parallelised at task level by OpenMP using fork-join 
parallelization style.

Measuring energy consumption  
of multi-core processor

We used Intel VTune Profiler 2023.0 and 
built in Intel SoC Watch utility to measure energy 
consumption. Intel SoC Watch is a command line tool 
for monitoring metrics related to power consumption on 
Intel architecture platforms. It can report power states 
for the system/CPU/GPU devices, processor frequencies 
and throttling reasons, total energy consumption over 
a period, power consumption rate, and other metrics 
that provide insight into the system's energy efficiency. 
Intel SoC Watch collects data from both hardware and 

operating system with low overhead. Our experiments 
aimed at the measurement of energy consumption in 
Joules (J). To do it, we measured the runtime of each 
algorithm represented by single-thread and multi-
threaded implementations and measured the average rate 
of energy consumption in Watts (W) of the CPU package 
for full duration of each algorithm execution. The CPU 
package energy consumption is related to all cores, each-
core-separate L1 and L2 private caches, shared L3 cache 
and other hardware components included into the CPU 
package.

All runs of the program implementations of four 
shortest path algorithms FW, GEA, BFW and HBFW 
were carried out on a desktop computer equipped with 
Intel Core i7-10700 CPU processor which contains 8 
cores (16 hardware threads) with the support of “Intel 
Turbo Boost 2.0”, “Intel Turbo Boost Max 3.0” and 
“Enhanced Intel SpeedStep” technologies. Every core is 
equipped with private L1 (512KB) and L2 (2MB) caches 
and shared L3 (16MB) cache. Its base frequency is 2.90 
GHz and can increase up to 4.80 GHz. The algorithms 
were implemented in the C++ language using GNU GCC 
compiler v12.2.0.

Experiments were done on multiple randomly 
generated complete directed weighted graphs of 1200, 
2400, 3600 and 4800 vertices. Every experiment was 
repeated several times and the results were verified 
against the results of original Floyd-Warshall algorithm. 
Two of the four examined algorithms are blocked and 
the other two are not. The following block sizes were 
considered: 30×30, 48×48, 50×50, 75×75, 100×100, 
120×120, 150×150, 200×200, 240×240, 300×300, 
600×600, 1200×1200 and 2400×2400. All the sizes 
divide the matrix into equal blocks without remainders.

Influence of single-thread implementations  
of algorithms on processor energy consumption

The sequential versions of algorithms FW, GEA, 
BFW and HBFW are implemented as single-thread 
applications written in C++. The single thread executes 
on one core and one logical processor at any time. Other 
cores are in idle state; therefore, the energy consumption 
is related to a part of the processor components: the 
core, its L1 and L2 caches, and shared cache L3. The 
experiments show mainly how efficiently the algorithms 
exploit the processor’s hierarchical memory.

The first series of experiments demonstrates how 
the block size in BFW and HBFW influences the processor 
energy consumption. Figures 1–3 show that on graph 
of 4800 vertices HBFW consumes less energy against 
BFW for all block sizes. The first reason is the runtime 
of HBFW is less than the runtime of BFW (Figure 2). The 
second reason is the consumption rate of HBFW is less 
against BFW for most block sizes (Figure 3). The figures 
also show that GEA has the lowest energy consumption 
and runtime of all the algorithms at any size of block; FW 
appears to be the worst with respect to both runtime and 
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energy consumption. At the same time FW and GEA have 
the same energy consumption rate (Figure 3).

Figure 1. Energy consumption (J) of FW (triangle),  
GEA (circle), BFW (square) and HBFW (diamond) algorithms 

vs. block size on graph of 4800 vertices

Figure 2. Runtime (s) of FW (triangle), GEA (circle),  
BFW (square) and HBFW (diamond) algorithms vs. block size 

on graph of 4800 vertices

Figure 3. Average rate (W) of FW (triangle), GEA (circle), 
BFW (square) and HBFW (diamond) algorithms vs. block size 

on graph of 4800 vertices

Figure 4 compares the energy consumption 
that is caused by algorithms GEA, BFW and HBFW in 
comparison with those caused by FW on graphs of 1200 
to 4800 vertices. On graph 1200, GEA has the lowest 
energy consumption. FW gains against BFW and HBFW 
but loses GEA. On larger graphs, FW loses all other 
algorithms.

Figure 5 depicts the speedups the GEA, BFW and 
HBFW have in comparison with FW. FW is the slowest 
algorithm; therefore, all the speedups exceed 1. GEA has 
the lowest runtime; as a result, it has the lowest energy 
consumption and yields the highest speedup. HBFW has a 

lower runtime and therefore a lower energy consumption 
than BFW has. It is interesting that there is a graph size 
(local optimum at 3600 vertices), for which the speedup 
of all three algorithms is the highest.

Figure 4. Relative energy consumption given by GEA (circle), 
BFW (square) and HBFW (diamond) algorithms against FW 

vs. graph size 

Figure 5. Speedup of GEA (circle), BFW (square) and HBFW 
(diamond) algorithms against FW vs. graph size

Figure 6 shows that algorithms FW, GEA, BFW 
and HBFW can gain and lose each other regarding the 
energy consumption rate.

Figure 6. Energy consumption average rate of GEA (circle), 
BFW (square) and HBFW (diamond) algorithms against FW 

vs. graph size

Influence of parallel implementations  
of algorithms on processor energy consumption

The parallel multi-threaded implementations 
[23, 24] of algorithms FW-OMP, BFW-OMP and 
HBFW-OMP were generated by the OpenMP compiler. 
We have not succeeded to generate an acceptable 
parallel implementation for GEA using OpenMP. In the 
implementations, the energy consumption is related to all 
cores, caches, and other components of the CPU package.
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Figures 7, 8 and 9 show on graph of 4800 
vertices how the block size in multi-threaded BFW-
OMP and HBFW-OMP influences the processor energy 
consumption. These algorithms consume less energy 
than the single-thread GEA and multi-threaded FW-OMP 
for block-sizes 48–300 (Figure 7). For larger block-sizes, 
GEA and even FW-OMP can gain BFW-OMP and HBFW-
OMP. It is interesting that GEA’s energy consumption is 
about twice lower than one of FW-OMP’s.

Figure 7. Energy consumption (J) of FW-OMP (triangle),  
GEA (circle), BFW-OMP (square) and HBFW-OMP 

(diamond) algorithms vs. block size on graph of 4800 vertices

Figure 8. Runtime (s) of FW-OMP (triangle), GEA (circle), 
BFW-OMP (square) and HBFW-OMP (diamond) algorithms 

vs. block size on graph of 4800 vertices

The patterns depicted in Figure 8 for the 
algorithms’ runtimes explain the patterns of energy 
consumption from Figure 7. The runtimes of BFW-
OMP and HBFW-OMP are the lowest for most block-
sizes. The runtimes of FW-OMP and GEA are close 
enough. Figure 9 shows that single-thread GEA’s energy 
consumption rate is significantly lower than those of 
parallelized multiple-threaded HBFW-OMP and BFW-
OMP, which in their turn have lower energy rate than 
those of FW-OMP.

It can be observed from Figure 10 that FW-OMP 
loses other algorithms on energy efficiency for any 
graph-size. The 1-thread GEA gains other multi-threaded 
algorithms on graph 1200. On larger graphs, BFW-OMP 
and HBFW-OMP consume less energy than GEA and 
FW-OMP.

Figure 9. Average rate (W) of FW-OMP (triangle),  
GEA (circle), BFW-OMP (square) and HBFW-OMP (diamond) 

algorithms vs. block size on graph of 4800 vertices

Figure 10. Relative energy consumption given by  
GEA (circle), BFW-OMP (square) and HBFW-OMP 

(diamond) algorithms against FW-OMP vs. graph size

Figures 11–12 compare multi-threaded omp-
implementations against 1-thread implementations of the 
FW, BFW and HBFW algorithms depending on the graph 
size. The energy consumption of FW is higher for multi-
threaded than for 1-thread implementations on almost all 
graph-sizes (Figures 11). Contrary, the multi-threaded 
BFW and HBFW have smaller energy consumption than 
their single-thread conterparts.

The speedup by FW is higher up to 3.26 times for 
multi-threaded implementations than for single-thread 
one (Figures 12). The speedup by parallel BFW and 
HBFW reaches 7.89 and 6.30 times. With the increase of 
graph size up to 3600 the speedup is being increased and 
then decreased.

Figure 11. Relative energy consumption of OpenMP-
implementations against single -thread ones of FW (triangle), 

BFW (square) and HBFW (diamond) algorithms vs. graph 
size



Figure 12. Speedup of OpenMP-implementations against 
single-thread ones of FW (triangle), BFW (square) and  

HBFW (diamond) algorithms vs. graph size

Figure 13 shows that the multi-threaded FW-
OMP algorithm gains up to 46 % the single-thread GEA 
algorithm with respect to runtime, but the latter algorithm 
gains up to 57 % against the former one with respect to 
power consumption.

Figure 13. Relative energy consumption (solid line) and 
runtime (dashed line) given by GEA against FW-OMP vs. 

graph size

Influence of CPU performance state and 
operating frequency on energy consumption

Intel Core i7-10700 CPU supports 22 
performance states (also known as PX states), where P0 
corresponds to top performance in which processor uses 
its maximum capabilities and therefore may consume 
maximum power. The P1–P21 states correspond 
to active states in which processor’s performance 
capabilities are truncated to reduce power consumption. 
The current PX-state and transitions between the states 
are determined by hardware. The operating system 
can request a change of state based on workload 
requirements and awareness of processor capabilities. 
However, in addition to the operating system request, 
the final decision is made accounting for different 
system constraints such as workload demand and 
thermal limits. During all conducted experiments all 
CPU cores were residing in the top performance P0 
state. However, depending on the type of workload 
(different parallel algorithms) the active CPU frequency 
and percentage of residency in that frequency changed 
significantly.

Figures 14, 15 and 16 depict a percentage 
of residency in different CPU frequency intervals 
alongside an average frequency of each logical 
processor during execution of FW-OMP, BFW-OMP 
and HBFW-OMP algorithms respectively on graph of 
4800 vertices. Figure 14 shows that algorithm FW-
OMP operates over 60 % of its active time in 4600–
4501 MHz frequency interval, which is a maximum 
non-Turbo Boost  frequency of the target CPU, and 
the rest of its active time (around 20 %) in 4100–
3901 MHz interval. This gives an average operating 
frequency of 4400 MHz.

At the same time, both BFW-OMP and HBFW-
OMP (Figures 15 and 16) spend most of the active 
time in frequency intervals of 4400-4200 and 3700-
3600 MHz (around 30 % and 25 % of overall time 
respectively), which leads to an average operating 
frequency of 4000 MHz. Such significant differences in 
operating frequencies along with the levels of references 
locality in big data processing result in an up to 3 times 
smaller energy consumption of both BFW-OMP and 
HBFW-OMP algorithms over the FW-OMP algorithm 
(see Figure 10).

Figure 14. Logical processors residency % in CPU frequency 
intervals (MHz) of FW-OMP algorithm (stacked bars) and 

average CPU frequency (solid line, MHz) on graph of 4800 
vertices

Figure 15. Logical processors residency % in CPU frequency 
intervals (MHz) of BFW-OMP algorithm (stacked bars) and 

average CPU frequency (solid line, MHz) on graph  
of 4800 vertices
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Figure 16. Logical processors residency % in CPU frequency 
intervals (MHz) of HBFW-OMP algorithm (stacked bars) and 

average CPU frequency (solid line, MHz) on graph  
of 4800 vertices

Conclusion

Modern multi-core processors are designed to ex-
ploit every possibility to reduce energy consumption. De-
velopment of algorithms and computer programs which 
force the processor’s components to consume less energy 
is an additional external source of increasing the energy 
efficiency of hardware. On four algorithms of search-
ing for shortest paths in large dense directed weighted 
graphs and on sequential and parallel implementations of 
the algorithms we have measured and analyzed how the 
processor energy consumption depends on the algorithm 
properties and how the processor accounts for the prop-
erties to tune its behavior with the objective of increasing 
its energy efficiency. The paper has found out the most 
energy efficient algorithms for searching for shortest 
paths in dense graphs.
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ПРИХОЖИЙ А.А., КАРАСИК О.Н.

ВЛИЯНИЕ АЛГОРИТМОВ ПОИСКА КРАТЧАЙШИХ ПУТЕЙ НА 
ЭНЕРГОПОТРЕБЛЕНИЕ МНОГОЯДЕРНЫХ ПРОЦЕССОРОВ

Белорусский национальный технический университет
г. Минск, Республика Беларусь

Современные многоядерные процессоры, операционные системы и прикладное программное 
обеспечение разрабатываются с учетом требований энергоэффективности, что значительно снижает 
энергопотребление. Энергоэффективность программного обеспечения зависит от алгоритмов, которые 
оно реализует, и от того, как оно использует аппаратные ресурсы. В данной работе мы рассматриваем 
последовательную и параллельную реализации четырех алгоритмов поиска кратчайших путей на плотных 
взвешенных графах, измеряем и анализируем их время выполнения, энергопотребление, состояния 
производительности и рабочую частоту процессора. Наша цель – выяснить, как каждый из алгоритмов 
влияет на энергопотребление процессора, как процессор и операционная система анализируют рабочую 
нагрузку и предпринимают действия по увеличению или уменьшению рабочей частоты и отключению ядер, 
а также какие алгоритмы предпочтительнее использовать в последовательном и параллельном режимах. 
Алгоритм на основе расширения графа (GEA) оказался наиболее энергоэффективным среди алгоритмов, 
реализуемых последовательно. Классический алгоритм Флойда-Уоршалла (FW) потребил в два раза больше 
энергии, а блочные однородный (BFW) и неоднородный (HBFW) алгоритмы потребили на 52,2 % и 21,2 
% больше энергии, чем GEA. Все эксперименты проводились на 8-ядерном процессоре Intel Core i7-10700. 
Параллельные реализации алгоритмов BFW и HBFW быстрее и энергоэффективнее параллельной реализации 
FW. Они потребили меньше энергии, чем их последовательные аналоги. Последовательный алгоритм 
GEA потребил меньше энергии, чем параллельный FW, хотя проиграл последнему по времени выполнения. 
Многоядерный процессор выполнял FW со средней частотой 4235 МГц, и выполнял BFW и HBFW с меньшей 
частотой 4059 МГц и 4035 МГц соответственно.

Ключевые слова: многоядерный процессор, алгоритм кратчайших путей, однопоточное приложение, 
многопоточное приложение, время выполнения, энергопотребление, OpenMP
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