УДК 621.311

Определения потенциала и способ получения электроэнергии от ветра в ветряных регионах Республики Узбекистан

Ахмедов А. П. ¹, Худойберганов С. Б. ¹, Юркевич Н. П. ² ¹Ташкентский государственный транспортный университет Ташкент, Республика Узбекистан, ²Белорусский национальный технический университет Минск, Республика Беларусь

Ветровая энергетика занимает достаточно важное место в балансе глобальной «зеленой» генерации. Турецкая компания Deveci Tech принципиально изменила подход к вопросу, показав, что собирать ветровую энергию можно прямо на улицах городов или междугородних трассах. В статье предлагается установить в регионах Узбекистана с требуемой скоростью ветра ветроустановки Axies Buнд SR — 600/800 вдоль дорог с обеих сторон. Полученную электроэнергию можно использовать по-разному, например, для освещения дорог и улиц, для зарядки электромобилей и электробусов.

Ветровая энергетика занимает достаточно важное место в балансе глобальной «зеленой» генерации, но до сих пор турбины устанавливаются в основном в прибрежных зонах, где ветер постоянный и более сильный. При

Рис. 1. Турбины Enlil, установленные в Стамбуле

движении транспортных средств возникают волны давления и разряжения воздуха. Инженеры из Стамбула создали вертикальную ветровую турбину ENLIL, которая работает от воздушных потоков, создаваемых быстро движущимися автомобилями. Завихрения от проходящих большегрузных машин и автобусов заставляют ветряк вращаться еще сильнее, а вертикальное расположение длинных лопастей обеспечивает максимальный захват потока [1].

Турбины Enlil занимают совсем немного места на земле, легки в сборке-разборке и эксплуатации (рис. 1). Турбина подключена к генератору, и произведен-

ная энергия может поступать в сеть или храниться в аккумуляторах до момента, когда она понадобится [1].

В Стамбуле установили ветрогенераторы, которые производят энергию с помощью потока ветра, образующегося от движения автомобилей (рис. 2).

Рис. 2. Ветрогенераторы, установленные в Стамбуле

На сегодняшний день проблемы использования возобновляемых источников энергии мировым сообществом являются очень важными и насущными. Запасы традиционных источников энергии имеют тенденцию к истощению, и человечество уже прилагает серьезные усилия по разработке альтернативных генерирующих устройств. Кроме этого, потребление электроэнергии в мире растет с каждым

днем [2–4]. Многое зависит от средней скорости ветра в рассматриваемом регионе.

Значения средних скоростей ветра за год в областях Республики Узбекистан приведена в табл. 1 [5].

Таблица 1 Значения средних скоростей ветра за год в областях Республики Узбекистан

No	Название области	Средняя скорость ветра за год		
		км/час	м/с	
1	Республика Каракалпакстан	15,73	4,37	
2	Андижанская область	7,68	2,13	
3	Бухарская область	15,85	4,40	
4	Джизакская область	9,16	2,54	
5	Кашкадарьинская область	13,44	3,73	
6	Навоийская область	15,63	4,34	
7	Наманганская область	9,73	2,70	
8	Самаркандская область	11,90	3,31	
9	Сырдарьинская область	10,35	2,88	
10	Сурхандарьинская область	11,21	3,11	
11	Ташкентская область	9,75	2,71	
12	Ферганская область	8,47	2,35	
13	Хорезмская область	15,48	4,30	

Из табл. 1 видно, что в некоторых областях Республики средняя скорость ветра за год соответствует требованиям установки и эксплуатации ветрогенераторов. Таких регионов четыре: Республика Каракалпакстан, Бухарская область, Навоийская область и Хорезмская область. В этих регионах средняя скорость ветра за год составляет более 4 м/с.

В табл. 2 приведены площади территорий регионов Узбекистана, с необходимой скоростью ветра [6].

Из табл. 2 можно сделать вывод о том, что более 70 % территории Республики Узбекистан пригодна для установки и эксплуатации ветряных генераторов. Ветрогенераторы можно разделить на три категории: промышленные, коммерческие и бытовые (для частного использования).

Таблица 2 Площади территорий регионов Узбекистана с необходимой скоростью ветра

No	Название области	Площадь	В процентах
		территории	от РУз
		тыс. м ²	%
1	Республика Каракалпакистан	165,6	36,88
2	Бухарская область	39,4	8,78
3	Навоийская область	110,8	24,68
4	Хорезмская область	6,3	1,4
	Республика Узбекистан	448,97	

Существуют два основных типа ветротурбин: с вертикальной осью вращения («карусельные» — роторные (в том числе «ротор Савониуса», точнее «ротор Братьев Ворониных», «лопастные» ортогональные — ротор Дарье); с

Рис. 3. Ветроустановки Axies Винд

горизонтальной осью круглого вращения (крыльчатые). Они бывают быстроходными с малым числом лопастей и тихоходными многолопастными, с КПД до 40%. Также существуют барабанные и роторные ветротурбины. Предлагается использовать в качестве ветрогенераторний установки, китайский ветрогенератор

Axies Винд SR -600/800 (рис. 3). Эффективность таких ветрогенераторов очень высокая.

Мощность воздушного потока, создаваемая естественным ветром, составит

$$P = \frac{\mathrm{d}E}{\mathrm{d}t} = \frac{C_p \cdot m \cdot v^3}{2} = \frac{C_p \cdot \rho \cdot S \cdot v^3}{2},$$

где C_p – коэффициент использования энергии ветра; v – скорость воздушного потока, m/c; S – ометаемая площадь, m^2 .

Для выбранной ветроустановки $C_p = 0.19$, S = 2 м².

В табл. 3 приведены технические характеристики и цена ветроустановок Axies Винд (рис. 3) двух модификаций.

Таблица 3 Технические характеристики и цена ветроустановок Axies Винл

техни неские характеристики и цена ветро установок такез винд							
Изготовитель	Напряжение,	Мощность,	Цена				
	В	Вт	рубль	сум			
Axies Винд	12	800	19321,08	2840187			
(Китай)							
Axies Винд	24	1000	20653,56	3036138			
(Китай)							

Они очень чувствительны и начинают вырабатывать энергию даже со скоростью 2 м/с. Доступно также для подключения к сети. Произведем расчет естественной генерации за счет ВЭУ в предположении, что ВЭУ работают в обычном режиме за счет естественных ветров. Из этого графика можно сделать вывод, что средняя скорость ветра за год в Республике Каракалпакстане составляет примерно 15,73 км/час или 4,37 м/с.

Мощность воздушного потока, создаваемая ветром

$$P = \frac{0,19 \cdot 1,226 \cdot 2 \cdot 4,37^3}{2} = 19,44 \,\mathrm{Bt}.$$

Выработанная энергия за год одним ветрогенератором составит

$$E_{\text{ТОЛ}} = 19,44 \cdot 24 \cdot 365 \,\text{Bt} = 170,3 \,\text{кB} \cdot \text{час}.$$

Сумма, сэкономленная на одном ветрогенераторе за год:

$$S_{\text{ect1}} = 170,3.900 \text{ cym} = 153270 \text{ cym}.$$

Протяженность автомобильных дорог Каракалпакстана составляет 4262 км, и все эти дороги требует освещения в темное время сутки. Рассчитаем энергию, вырабатываемую ветрогенераторами на 1 км дороги. Предположим, что ветрогенераторы размещаются по 50 шт с каждой стороны дорог (рис. 4) на километре пути, тогда получается выработка энергии

$$E_{\text{ест}}(1 \text{ км}) = 170, 3 \times 100 = 17030 \text{ кB} \cdot \text{час}.$$

Сумма стоимости всех ветрогенераторов на километре пути составит

 $S_{\rm BF} = 50.3 \text{ млн} = 150 \text{ млн сум.}$

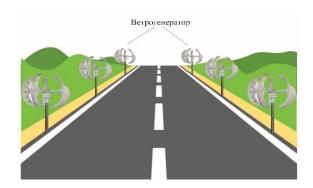


Рис. 4. Ветроустановки, установленные вдоль дороги

Полученную электроэнергию можно использовать по-разному, например, для освещения дорог и улиц, зарядки электромобилей и электробусов [7].

Литература

- 1. Инновационный ветрогенератор Enlil работает от проезжающих мимо автомобилей [Электронный ресурс]. Режим доступа: https://www.sgs-company.de/v/#home. Дата доступа: 12.07.2022.
- 2. Ахмедов, А. П. Выработка электрической энергии путем использования ветра, поднятый движущимися транспортными средствами / А. П. Ахмедов, Ш. П. Жовлиев, С. Б. Нормуродов // Точная наука. 2019. № 68. С. 18–22.
- 3. Ахмедов, А. П. Способ получения электроэнергии от ветра проезжающих транспортных средств / А. П. Ахмедов, С. Б. Худойберганов, О. М. Кутбидинов, Д. Ф. Усмонов // Universum: технические науки. 2022. Т. 104, № 11—3. С. 49—53.
- 4. Akhmedov, A. P. The use of solar panels to power the air conditioning and ventilation system of vans / A. P. Akhmedov, S. B. Khudoyberganov, N. P. Yurkevich // Инновационные технологии в водном, коммунальном хозяйстве и водном транспорте [Электронный ресурс]: материалы II республиканской

научно-технической конференции, 28–29 апреля 2022 г. / редкол.: С. В. Харитончик [и др.]. – Минск: БНТУ, 2022. – С. 393–397.

- 5. Климат и средняя погода круглый год в Узбекистане [Электронный ресурс]. Режим доступа: https://ru.weatherspark.com/y. Дата доступа: 01.02.2017.
- 6. Регионы Узбекистана Википедия [Электронный ресурс]. Режим доступа: https://ru.wikipedia.org/wiki. Дата доступа: 27.04.2022.
- 7. Ветряная турбина 1000 Вт, 12 В, 24 В, вертикальные оси, ветряной генератор VAWT, маленькая ветряная мельница, свободная энергия, с контроллером заряда МРРТ, для домашнего использования [Электронный ресурс]. Режим доступа: https://aliexpress.ru/item/1005003764276989. html?sku_id. Дата доступа: 01.04.2023.

УДК 631.221

Рентгенофотоэлектронный спектроскопический анализ составов слоев на основе Cu₂ZnSnS(Se)₄.

Валиханов Н. К. Ташкентский государственный транспортный университет Ташкент, Республика Узбекистан

Содержание в воздухе тонких слоев на основе Zn неизбежно приводит к проникновению и фиксации кислорода воздуха в твердой фазе талоцианина цинка, где он выступает в роли акцептора электронов. Учитывая, что в этих слоях могут быть обнаружены и другие частицы, присутствующие в атмосфере (которые могут играть определенную роль в их фотоэлектрических свойствах), для определения элементного состава был использован количественный анализ рентгеновской фотоэлектронной спектроскопии (РФЭС).

Содержание тонких слоев на основе Zn в воздухе обязательно приводит к проникновению и фиксации кислорода воздуха в твердой фазе талоцианина цинка, где, действует как акцептор электронов [1]. Учитывая, что в этих слоях можно фиксировать другие частицы, присутствующие в атмосфере (которые могут играть определенную роль в фотоэлектрических свойствах), для уточнения их элементного состава применялся количественный анализ рентгеновской фотоэлектронной спектроскопии (РФЭС).

В то же время с помощью РФЭС были выявлены новые типы химических связей, появившиеся в синтезированных тонких слоях. На рис. 1 показаны спектры РФЭС во всем диапазоне энергий. В спектрах РФЭС мы свидетельствуем о наличии пиков характеристики С 1s, O 1s, N 1s, I 3d и Zn 2p.