Мариев П.Л., Моисеенко В.И., Сидоренко А.Г.

ПОВЫШЕНИЕ НАДЕЖНОСТИ ДЕТАЛЕЙ МАШИН ПУТЕМ УПРАВЛЕНИЯ ЗЕРНОГРАНИЧНЫМИ ЭФФЕКТАМИ В КОНСТРУКЦИОННЫХ СТАЛЯХ.

ИНДМАШ НАНБ, ПО «БелАЗ» Минск, Беларусь

Важным шагом дальнейшего изучения микро-и макроскопических аспектов пластической деформации и разрушения является развитие представлений о зарождении и развитии макролокализованной пластической деформации (МЛПД) в стали и о приоритетной роли приграничных объемов зерен при формировании свойств сталей и стальных деталей машин. В предложенной новой гипотезе МЛПД узлы сопряжения аматрицы с приграничным аустенитом и мартенситом впервые рассмотрены как исчточники дислокации и локальных напряжений, действующих в приграничяных объемах зерен [1]. При этом основная роль отводится неравномерной, зернограничной концентрации меди и, следовательно, аустенита, как одной из причин избирательного транскристаллитного скольжения.

Предположение о высокой эффективности источника дислокаций при сопряжении γ и α - решетки обусловило интерес к исследованию возможности существования аустенита в приграничных объемах зерен. В отожженной феррито-перлитной стали 20Х2Н4А, содержащей примесную медь 0,15%, исследованием спектров ядерных магнитных резонансов (ЯМР) нами обнаружен аустенит в количестве ~3%. Полученный результат дал основание смоделировать условия образования приграничной γ -фазы при последовательном долегировании Сu и Ni среднеуглеродистой стали, определить плотность дислокаций в приграничных зонах зерен и провести структурный анализ этих зон. Исследования проводились на образцах из трех малоуглеродистых сталей, отличающихся только содержанием меди и никеля: образец № 1 — сталь20; образец № 2— то же, с добавкой 0,5 % меди; образец № 3 - то же, с добавкой 0,5 % меди,2,5 % никеля и 1,2% хрома.

Образцы стали были термообработаны по следующему режиму: нормализация с температуры $900\pm10^{\circ}$ С, после выдержки 2 часа — высокий отпуск при To — $650\pm10^{\circ}$ С в течение 3 час, что исключало наличие остаточного аустенита и обеспечивало снятие фазового наклепа при $\gamma \to \alpha$ превращении. Просмотр фольги проводился в электронном микроскопе ЭМ-200 при напряжении 100 kB..

Электроно-микроскопические исследования показали, что в нелегированной стали плотность дислокаций вблизи границы и в сердцевине ферритных зерен практически одинакова; при легировании только медью (образец № 2) плотность дислокаций несколько выше в приграничных объемах, при одном дополнительном долегировании никелем (образец № 3) это различие увеличивается (табл. 1).

В образце №3 по границам зерен феррита (в некоторых участках сплава) обнаружена прослойка другой фазы. Анализ полученных микроэлектронограмм позволяет утверждать, что в смоделированном составе стали наблюдается аустенит. Таким образом идентификация аустенита в виде локальных зон у границ зерен и отмеченное увеличение плотности зернограничной дислокации (ЗГД) являются прямым подтверждением возникновения источника ЗГД вследствие сопряжения решеток α и γ- железа имеющих различающиеся собственные параметры.

Методами Auger- и Sims – спектрометрии установлено интенсивное выделение меди и таких аустенитообразующих элементов как Ni, Mn и C в пределах границ зерспе

при нагреве до 800°C, причем наиболее интенсивно в интервале 450-500 °C. Таблица 1.Плотность дислокаций на границах и в теле зерен исследуемых сталей

Стопт	Плотность дислокаций, 10^{10} см ⁻²			
Сталь	На границе	В сердцевине		
1	0,7	0,7		
2	5	4		
3	7	4		

Полученный результат позволил выдвинуть идею управления свойствами стали путем энергосберегающей термообработки за счет изменения расстояния 1 между источниками приграничных дислокаций в двух соседних зернах. Предполагается, что при этом достигается повышение равнопрочности границ зерен и снижение склонности стали к макролокализации пластической деформации. Формально это равнозначно увеличению значений параметра 1 в формуле (1). Чем больше абсолютные значения 1, тем меньше влияние неизбежных вариаций 1 на изменение концентраций напряжений у вершин линий скольжения равных размеру зерна (L)

$$\sigma = (L/1)^{1/2}.$$
 (1)

Соотношение (1) используется для определения концентрации напряжений в вершине полосы макроскольжения [2].

Ввиду того, что существование различных зернограничных прослоек является следствием высокого местного легирования аустенитообразующими, то увеличение 1 может быть осуществлено при относительно низких температурах нагрева, так как известно, что высоколегированный мартенсит распадается уже при 300-400°C [3]. Диффузия металлических элементов в стали при уровне температур, близком к указанному, уже может проявляться достаточно активно.

В то же время температура нагрева должна быть ниже температуры распада третичного цементита (\sim 600°C).,распад которого приводит к снижению служебных свойств углеродистых сталей [4]. Эта особенность сталей проявляется после нагрева выше 600°C и последующего охлаждения в воде. Поэтому в разрабатываемом методе температура нагрева принята в интервале 500-550°C.

При температурах нагрева 450-550°C можно ожидать превращения приграничного мартенсита в аустенит, а также дополнительного легирования приграничного аустенита как металлическими элементами, так и углеродом. При быстром охлаждении стали с указанных температур возможно увеличение толщины высоколегированной приграничной зоны зерна и, как результат, смещение к центру зерен узлов сопряжения кристаллических решеток, формирующих источники дислокаций в приграничных объемах. В этом случае расстояние между взаимодействующими источниками в соседних зернах увеличивается.

При прочих равных условиях такая термообработка может способствовать выравниванию концентраций элементов в искажениях решеток. Таким образом, избирательное распространение пластической деформации между соседними зернами в этом случае должно быть затруднено, а степень МЛПД должна быть уменьшена.

Предложенный метод основан на локальных структурных превращениях высоколегированных фаз и является обратимым процессом.

Микроспектральные анализы (Euger-спектрометрия, SIMS-спектрометрия вторичных ионов, Esha-рентгеновская фотоэлектронная спектрометрия) в основном подтвердили принципы, заложенные в предлагаемом энергосберегающем термоупрочнении. После нагрева стали 20 до 515-530°С и охлаждения ее в воде обнаружено обога-

щение приграничных слоев медью и никелем и обеднением углеродом (табл. 2). Ширина приграничного слоя, на котором происходит заметное обогащение медью с никелем, увеличивается более чем в 1,5 раза.

У углеродистых и низколегированных сталей после нагрева до 515-530°C и охлаждения в воде снижается внутреннее трение. (рис.1).

Таблица 2. Результаты количественного анализа образцов стали 20 при различных термообработках (образец по ГОСТ 9454-78, U - надрез. Излом при -196°C на воздухе, Esha-

спектрометрия, скорость травления 1 нм/мин.)

Номер образца	Время травления	C _{Cu} /C _{Fe}	C _{Ni} /C _{Fe}	C _{Mn} /C _{Fe}	C _r /C _{Fe}	C _C /C _{Fe}
1	5	4,3·10 ⁻³	1,2.10-3	1,5·10 ⁻²	1,2.10-4	-
	40	0,6.10-3	-	$0.8 \cdot 10^{-3}$	4.10-4	2,5·10 ⁻²
2	5	5,4·10 ⁻³	9.10-3	2.10-2	1,0	-
	40	$2,1\cdot10^{-3}$	8.10-3	9·10 ⁻³	$2,0.10^{-3}$	$1,5\cdot 10^{-2}$

Примечание: 1- нормализация; 2 - нагрев до 530°С и охлаждение в воде. Содержание примесей: Cu ,Ni ≈0,15%.

Внутреннее трение - наиболее чувствительная характеристика начального периода микропластичности в стали. Поэтому отмечаемое снижение внутреннего трения после термоупрочнения с нагрева в 530°С можно рассматривать как следствие изменений, происходящих в приграничных объемах зерен, где, как отмечалось [5], возникают первые дислокации при указанном уровне напряжений. После рассматриваемой термообработки изменяются закономерности пластического деформирования на пределе текучести. Исчезает «зубчатость» на диаграмме растяжения. Одновременно повышается сопротивление изгибу и усталости. Предел текучести при изгибе и предел выносливости при растяжении увеличиваются на 15-20% (рис. 2, табл. 3).

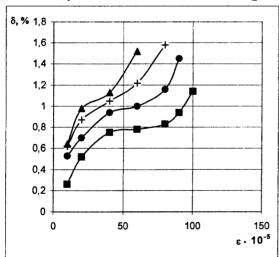


Рис.1. Декремент колебаний для образцов из сталей:

- **▲** 10XСНД, ожиг;
- 10ХСНД, отжиг, термоупрочнение с 550 °C;
- + сталь 20, нормализация;
- сталь 20, нормализция, термоупрочнение с 550 0 C.

Электронномикроскопическое исследование структуры границ зерен стали 10ХСНД после нормализации, последующего нагрева до 530°С и охлаждения в воде показало, что в зоне ферритных границ возникает «бахрома» из коротких дислокаций, т.е. граница как бы расширяется, становится более объемной (рис. 3). Такие явления

отмечаются в холоднодеформированных металлах [6]. Дополнительно следует указать на выпадение частиц на границах ферритных зерен.

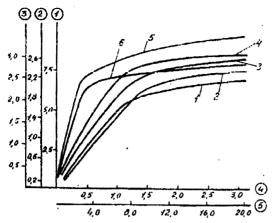


Рис.2. Упругопластический изгиб балок: 1 - сталь 20, нормализация 1, поперечный изгиб, оси 3-4; 2 - сталь 20, нормализация, «закалка» с 530°С, поперечный изгиб, оси 3-4; 3 - сталь 10ХСНД, отжиг, чистый изгиб, оси 2-4; 4 - сталь 10ХСНД, отжиг, «закалка» с 530°С, чистый изгиб, оси 2-4; 5 - сталь 22ГСМТЮ АКМ, «закалка», высокий отпуск, поперечный изгиб, оси 1-5; 6 - сталь 22ГСМТЮ (обычная выплавка), поперечный изгиб, оси 1-5

Основные результаты и выводы дополнительно проверены на модельных образцах, вырезанных из замочного основания (кольца) обода колеса БелАЗ 75191 в зоне расположения канавки под замочное кольцо. Указанный элемент конструкции является наиболее нагруженной частью обода, и его материал испытывает различный спектр нагрузок.

Таблица 3.Сопротивление усталости стали 09Г2С при термоупрочнении: нагрев до

530°С и охлаждение в воде (изгиб с вращением)

Термообработка	Предел вынос- ливости, МПа	Примечание	
Нормализация	200	Образцы вырезаны	
Нормализация, нагрев до 530°C,	230	из листа толщ. 20 мм вдоль прокатки	
вода			

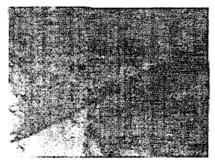


Рис.3. Электронная микрофотография структуры стали 10XCHД после нормализации, нагрева до 530^{0} C и охлаждения в воде (светлопольное изображение), увеличение в 15.000 раз

Кольца проходят операцию правки на калибровочном прессе. В результате на серийных кольцах появляются интенсивные, расположенные под углом 45° к оси обода следы макролокализованной пластической деформации. На кольцах, прошедших «закалку» с 550°С, линии сдвига не проявляются.

Сравнительные испытания на усталость образцов, вырезанных из ободьев, колес проведены на стандартной машине фирмы «Шенк» при частоте 10 Γ ц и коэффициенте асимметрии R=0,2. База испытаний N=3 10^6 (рис.4).

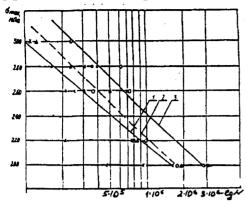


Рис.4. Долговечность модельных образцов обода колеса карьерного самосвала после различных видов термообработки: 1(X) — серийное исполнение обода (металл в состоянии поставки); $2(\Delta)$ — нормализация обода; 3(O) — нормализация обода, нагрев до 550° C охлаждение в воде

Таким образом, полученные результаты свидетельствуют о том, что прошедшие в материале изменения привели к устранению неоднородной пластической деформации Людерса-Чернова, определяющей склонность материала к зарождению усталостного и хрупкого разрушения.

Проведенный комплекс исследований позволил предложить для внедрения в промышленности новые методы повышения работоспособности деталей машин, основанные на управлении внутренней химической и структурной однородностью стали.

Литература. 1.Моисеенко В.И., Мариев П.Л. О локализации пластической деформации в сталях // ДАН БССР. - 1989. - N7.- C.625-627. 2.Мак Лин Д. Границы зерен в металлах. - М.: Металлургиздат.- 1960. - 322 с. 3.Гуляев А.П. Металловедение: Учебник для вузов. 6-е изд., перераб. и доп. -М.: Металлургия. -1986. -544 с. 4.Гудремон Э. Специальные стали. В 2 т., -М.: Металлургия. -1966. -736 с. 5.Орлов Л.Г. Образование дислокаций на границах зерен как составная часть механизма ранних стадий пластической деформации. Тез. докл. І ВК "Структура и свойства границ зерен". — Уфа. -1983. - С.13-14. 6.Орлов А.Н., Перевезенцев В.Н., Рыбин В.В. Границы зерен в металлах. - М.: Металлургия.- 1980. - 154 с.

УДК 621. 81: 621 - 192

Почтенный Е.К., Капуста П.П.

ПРОГНОЗИРОВАНИЕ СЛУЧАЙНОГО НАГРУЖЕНИЯ И ПОСТРОЕНИЕ НАГРУЗОЧНЫХ БЛОКОВ

Институт механики машин НАН Беларуси Белорусский национальный технический университет г. Минск, Беларусь

Постановка задачи. Важной задачей машиностроения при создании мобильных машин, например автотранспортных средств, является проблема обеспечения требуемых ресурса элементов конструкций с учетом их эксплуатационного нагружения, кото-