ТЕРМИЧЕСКАЯ ОБРАБОТКА БЫСТРОРЕЖУШЕЙ СТАЛИ А11РЗМЗФ2

Основное направление в создании новых высокопроизводительных быстрорежущих сталей — многокомпонентное легирование, существенное повышение содержания углерода и азота при ограниченном содержании вольфрама и молибдена. В настоящее время широкое распространение получает низколегированная сталь A11P3M3Ф2 (табл.1), которая может быть отнесена к дисперсионно-упрочняемым. Для эффективного использования стали требуется исследовать особенности ее структуры как в состоянии поставки, так и после термической обработки и на этой основе устанавливать оптимальные режимы термической обработки.

Микроструктура стали A11P3M3Ф2 в состоянии поставки типична для кованой быстрорежущей стали. В ней присутствуют три вида карбидов: первичные, вторичные и высокодисперсные, входящие в сорбит, представляющий матрицу стали. Помимо карбидной составляющей, в структуре присутствуют нитриды. Проведение рентгеновского фазового анализа затруднительно из-за большой плотности выделений и высокой дисперсности некоторых из них.

Сопоставление структур стали, закаленной от 1160°C, 1180 и 1200°C, указывает на то, что повышение температуры закалки приводит к росту зерна аустенита, влияя на дисперсность мартенсита. Величина зерна даже при максимальной температуре закалки (1200 °C) меньше, чем в стали Р6М5, закаленной от той же температуры, что связано с наличием нитридов и их барьерным эффектом. В структуре закаленной стали присутствуют первичные карбиды и нитриды, не растворившиеся при нагреве. С повышением температуры закалки имеет место лишь частичное их растворение. Содержание остаточного аустенита при этом изменяется от 29,5 до 39,7 %. Считается, что содержание остаточного аустенита в закаленной стали определяется составом твердого раствора, полученного при нагреве. Такой вывод был сделан в связи с тем, что процессы роста зерна и растворения карбидов сопутствуют друг другу. Однако содержание остаточного аустенита в закаленной стали зависит не только от состава твердого раствора, но и от величины его зерна. Существование этой зависимости объясняет также причину, вследствие которой с повышением температуры закалки увеличивается содержание остаточного аустенита в значительно большей степени, чем это спедовало бы в результате изменения состава аустенита. Наличие азота в α- и γ-фазах спсобствует повышению твердости мартенсита.

В исследовании отпуска стали основное внимание обращалось на превращения, протекающие при 580...600 °С и вызывающие дисперсионное твердение стали. Присутствие в стали азота независимо от температуры закалки способствует также повышению дисперсности структуры вследствие торможения коагуляции продуктов распада. После двукратного отпуска при 580 °С заметно некоторое укрупнение карбидов в стали, закаленной от 1200 °С. После отпуска при 600 °С плотность выделившихся фаз увеличивается, однако дисперсность мартенсита понижается. Механические свойства отпущенной стали приведены в табл. 2.

Табл. 1. Химический состав стали А11РЗМЗФ2 (процент по массе)

C	v	Мо	w	Cr	N	<u>Ni</u>	Si	Мп ие более		P
1,02	2,2	2,5	2,5	3,8	0,05	0,4	0,03	0,5	0,25	0,035
			-3,3						/	

Табл. 2. Механические свойства стали А11Р3М3Ф2

Режим обработки	I		Содержание остаточного аустенита, %				Теплостойкость (600°С, 4 ч)				
	Температура закалки, [°] С										
	1160	1180	1200	1160	1180	1200	1160	1180	1200		
Закалка	62,0	60,8	60,5	29,5	33,8	37,9		- <u>-</u>	_		
Отпуск при 580°C	64,4		64,1	_	_	,	61,7		60,5		
в течение 1 ч и дву- кратный по 45 мин	63,6	62,5	63,5	0	3,2	2	61,4	61,1	62,2		
Отпуск при 600°C	64,5	64,6	64,1	6,6	2,5	8,9	62,5	63,8	62,2		
в течение 1 ч			Av. 1			4.5					

Кривая изменения твердости при отпуске немонотонна, наблюдается ее провал, а затем новый подъем, что характерно для дисперсионно-твердеющих сплавов. Часть азота в стали А11РЗМЗФ2 переходит в раствор при нагреве под закалку, а затем выделяется из мартенсита при отпуске в виде нитридов. Выделение нитридов, более стойких против коагуляции, чем карбиды, и имеющих иную решетку, вызывает дисперсионное твердение. Помимо того, азот задерживает диффузию легирующих элементов, затрудняя разупрочнение мартенсита, и поэтому повышает теплостойкость стали.

Для оптимизации термической обработки стали использовался метод математического планирования эксперимента. За параметр оптимизации была взята твердость носле отпуска. Факторы, влияющие на параметр оптимизации: температура закалки (X_1) ; температура отпуска (X_2) и время отпуска (X_3) . Анализ значимости коэффициентов в уравнении регрессии позволил установить силу влияния факторов на твердость стали. Проведенные исследования позволяют рекомендовать для термической обработки стали $A11P3M3\Phi2$ следующие режимы: закалка от температуры $1180\,^{\circ}\mathrm{C}$, отпуск при $600\,^{\circ}\mathrm{C}$ в течение $1\,\mathrm{u}$.