Табл. 1. Зависимость прочности соединения от температуры деформации и диаметра контейнера

Температура деформации, °С	450			500			550		
Отношение диаметра контейнера к диаметру компо- зита	2,05	2,31	2,56	2,05	2,31	2,56	2,05	2,31	2,56
Прочность соединения, МПа	44	43,5	38	73,5	67,5	57,5	66	64	55

заготовкой из Д16. Прочность соединения композиционного стержня с оболочкой определяли путем выпрессовки сердечника из образцов, рабочая длина которых составляла 1—1,5 диаметра упрочняющего стержня. Испытания проводились при комнатной температуре. Прочность соединения рассчитывалась по усилию выпрессовки, отнесенному к площади поверхности сдвига. Результаты испытаний представлены в табл. 1.

При постоянном диаметре пуансона из композиционного материала с уменьшением диаметра контейнера удельные усилия закрытой прошивки увеличиваются, что вызывает повышение радиальных напряжений, действующих на пуансон. Увеличение давления в зоне контакта композита со сплавом благоприятно влияет на качество соединения и повышает предел прочности сварного соединения для всех исследованных температур деформации.

Повышение температуры сварки способствует увеличению площади истинного контакта и интенсифицирует диффузионные процессы, что особенно важно при таком кратковременном способе соединения, как закрытая прошивка,

Максимальная прочность сварного соединения достигается при температуре 500 °C и составляет 73,5 МПа. Некоторое снижение прочности соединения при 550 °C происходит в результате того, что в этом случае наблюдается частичное смятие торца пуансона из композиционного материала. Необходимая глубина заделки пуансона, определенная по условию равнопрочности сварного соединения и стержня с пределом прочности 1 ГПа, составляет для образцов диаметром 8, 9 и 10 мм соответственно 13,5, 14,5 и 17 мм.

УЛК 621.983.44:621.787

И.Г. ДОБРОВОЛЬСКИЙ, канд. техн. наук (БПИ)

СОВРЕМЕННАЯ ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ СИЛЬФОННЫХ ЗАГОТОВОК

Воздействовать на свойства материала сильфона, обусловливающие его технические характеристики, можно только на этапе изготовления трубчатой заготовки.

Основными способами получения сильфонных трубок-заготовок являют-

ся многократная ротационная вытяжка с утонением в шариковых матрицах с промежуточными разупрочняющими термообработками исходных плоских полуфабрикатов из листового материала (ленты) толщиной от 0,3 до 2,мм (для трубок малого диаметра) и профилирование труб из ленты с последующей сваркой на трубосварочных станках (для трубок большого диаметра). Последний технологический процесс включает резку мягкой ленты толщиной 0,3...0,4 мм на полосы, профилирование и продольно-шовную аргонодуговую сварку труб из полос, ротационную вытяжку в шариковых матрицах до окончательных толщин 0,08...0,25 мм с промежуточными (между деформационными операциями) разупрочняющими термообработками.

В действованией технологии изготовления сильфонных трубок-заготовок не была предусмотрена возможность изменения режимов технологического процесса в зависимости от качества исходного металла, отсутствовали также методы контроля механических характеристик материала и критерии оценки его пригодности для сильфонного производства. Брак при изготовлении бесшовных сильфонов из полученных заготовок в среднем составлял 25 %, в отдельных случаях доходя до 80...90 %. Непредсказуемость получения конечного результата вызывала необходимость в запуске дополнительного количества исходных заготовок, что приводило к перерасходу материала и снижало общую эффективность сильфонного производства.

Принятая в существовавшем ранее технологическом процессе оценка качества материала сильфонных трубок-заготовок по величине зерна и микротвердости могла характеризовать в основном эксплуатационные параметры сильфона как упругого элемента. Отсутствовала нацеленность технологии на показатели технологической пригодности материала, являющиеся характеристиками, которые могут быть определены только в результате механических испытаний.

Для оценки технологических свойств материала сильфонных трубчатых заготовок был разработан метод испытания их внутренним гидростатическим давлением (метод гидрораздачи), позволяющий испытывать сильфонные заготовки в условиях, идентичных тем, которые имеют место при формовании сильфона. Иссле́дование напряженно-деформированных состояний, возникающих в стенке сильфонной трубки-заготовки при ее испытаниях и при формовании из нее сильфона, позволило получить зависимость между минимальным значением пластичности материала σ_{\min} , обеспечивающим формование сильфона без разрушения, и коэффициентом гофрирования сильфона $k=(D-d_0)/d_0$:

$$\ln(1 + \delta_{\min}) \ge 0.58 \ln(1 + k)$$
,

где D и d_0 — соответственно наружный диаметр сильфона и начальный диаметр трубки-заготовки.

Экспериментально определено, что минимальное значение пластичности должно быть увеличено в 1,2 раза, что обеспечивает необходимый запас, гарантирующий формование сильфона без внесения в материал микродефектов, снижающих ресурс его работы. Были установлены требования к пластичности материала сильфонных трубок-заготовок [1]. Привлеченный метод акустической эмиссии позволил определять моменты появления структурных микро-

дефектов (микротрещин) в зависимости от интенсивности режимов деформирования и тем самым целенаправленно управлять последними [2].

Для механических испытаний исходных листовых заготовок предложен как наиболее эффективный в условиях сильфонного производства метод испытания на выдавливание сферической лунки (по Эриксену). Критерием эффективности принята тождественность напряженно-деформированных состояний, имеющих место при испытаниях сильфонных заготовок методом гидрораздачи и исходных листовых заготовок на выдавливание сферической лунки. Получена эмпирическая зависимость между результатами двух видов испытаний:

$$IE = 5.5 + 0.1258$$
,

где IE- глубина выдавленной лунки, мм; $\delta-$ относительное удлинение материала при испытании методом гидрораздачи, %.

Полученная зависимость дополнена коэффициентами, учитывающими необратимые изменения пластичности материала в процессе изготовления сильфонных трубок-заготовок из листовых полуфабрикатов. Необратимые изменения пластичности обрабатываемого материала вызваны масштабным фактором в результате снижения толщины трубки и возможным накоплением структурных повреждений при условии деформирования материала выше предельного уровня. Установлены значения предельных степеней деформирования для каждого конкретного сильфона с учетом условий его эксплуатации. Полученные критерии пригодности исходного листового материала, применяемого для изготовления сильфонов, использованы при разработке нормативно-технической документации на поставку материалов.

Разработанные рекомендации, использованные в условиях опытного и промышленного производства, не только способствовали устранению брака на формообразующих операциях изготовления бесшовных сильфонов (из трубок-заготовок малого диаметра), но и с соответствующей коррекцией были применены в производстве сильфонных заготовок из сварных труб. Особенности последней технологии потребовали дополнительных исследований.

Прочность сварного шва после сварки труб из дисперсионно-твердеющих материалов 36НХТЮ и Бр.Б2, определяемая предложенным выше методом гидрораздачи, составляет, как правило, 0,7—0,9 прочности основного металла. Снижение механических свойств объясняется изменением структуры и зоны термического влияния с укрупненным зерном.

Недостаточная прочность сварного шва и околошовной зоны сильфонных трубок-заготовок приводит к повышенному браку при последующем формообразовании сильфона, осуществляемом методом гидроформования и вызывающем в трубке-заготовке тангенциальные растягивающие напряжения, равные $(0.8-0.9)\sigma_{\rm B}$ материала. Брак при изготовлении сильфонов отдельных типоразмеров с большим коэффициентом гофрирования превышает 50 % по причине разрушения сварного шва.

Большое влияние на прочность сварного шва оказывают режимы ротационной вытяжки трубки-заготовки и последующей разупрочняющей термообработки. При этом прочность сварного шва может быть как увеличена, так и уменьшена. Повышение прочности происходит в результате выравнивания структур зоны шва и основного материала в процессе рекристаллизационного отжига при условии, что предшествующая интенсивность деформирования не превысила критического уровня, при котором начинаются необратимые структурные повреждения. В противном случае происходит снижение прочности шва.

В результате проведенной работы установлено, что оптимальные значения наиболее важных параметров термомеханической обработки, влияющие на структуру и физико-механические свойства различных участков сварной трубы, находятся в следующих диапазонах:

степень деформации по толщине сварной трубы при ее многократном деформировании способом ротационной вытяжки на первом деформационном переходе должна быть 20...30 %, а на последующих — не более 50 % для 36HXTЮ и 60 % для Бр.Б2;

диаметр шариков деформирующей матрицы при ротационной вытяжке сварных тонкостенных (с толщиной стенки не более 0,4 мм) труб не должен превышать $(25-30)\Delta s$, где $\Delta s=s_3-s_{_{\rm T}}-$ разница толщин заготовки и обработанной трубы;

режимы последующей разупрочняющей термообработки должны быть следующими: $T = (940 \pm 10)$ °C, $\tau = 10$ мин — для 36HXTI0 и $T = (720 \pm 10)$ °C, $\tau = 10$ мин — для Бр. Б2.

Изготовление экспериментальных партий сильфонов $20 \times 10 \times 0.08$ -36HXTЮ, $38 \times 6 \times 0.08$ -36HXTЮ и $38 \times 8 \times 0.12$ -Бр.Б2 показало, что применение предложенных режимов позволяет практически полностью исключить брак по разрушению сварного шва, который не превысил в указанных партиях 2%.

СПИСОК ЛИТЕРАТУРЫ

1. Добровольский И.Г., Степаненко А.В., Шиманович И.М., Шля-ховой В.С. Оценка технологической пластичности сильфонных трубок-заготовок // Весці Акадэміі навук БССР. Сер. фіз.-тэхн. навук. — 1988. — № 2. 2. Z vierkov G.I., Dobrovolski I.G., Šliachovoj V.S., Chochlov I.I. Ocena oraz prognozowanie wytrzymalości zmeczeniowej rur i sylfonow metoda emisji akystycznej // Rudy i metale nieżelazne. — 1988. — R. 33, nr. 9.

УДК 621.762.4:621.774.38

Е.Б. ЛОЖЕЧНИКОВ, д-р техн. наук, А.В. ТОЛСТИК, С.В. ВОРОНОВ, кандидаты техн. наук (БПИ), В.Г. ДЖАНГИРЯН, канд. техн. наук (НИИПХ, Загорск), В.Б. ГРОМОВ, Г.И. СИКАВИН, Ю.Л. ЯСИНСКИЙ (БПИ)

ДИСКРЕТНО-НЕПРЕРЫВНОЕ ВЫДАВЛИВАНИЕ ЗАГОТОВОК ИЗ ПОРОШКА

Выдавливание осуществляется обычно такими способами, при которых происходит существенное уменьшение площади поперечного сечения исходной заготовки. Однако если при обработке компактных (литых) металлов это