А.И. Кочергин, М.М. Дечко

СТОЙКОСТНЫЕ ЗАВИСИМОСТИ ПРИ ПЕРЕМЕННОЙ ВЕЛИЧИНЕ ИЗНОСА ИНСТРУМЕНТА

Зависимости стойкости инструмента от режимов резания обычно устанавливают при изнашивании инструмента до принятого критерия затупления, величина которого выбирается с учетом требований технологического или экономического характера. Получаемые зависимости справедливы только при величине принятого критерия затупления и не учитывают возможные ее изменения. Ввиду сложного характера функции "время работы — износ инструмента" включение величины износа в качестве исследуемого фактора наряду с элементами режима резания затруднит получение стойкостных зависимостей.

Предлагаемая методика позволяет учитывать влияние на стойкость инструмента принимаемого критерия затупления, изменяющегося в любом интервале, при различных режимах резания. Режимы резания варьируют в соответствии с заранее построенной матрицей планирования. Строят кривые реализаций износа и определяют периоды работы инструмента до достижения ряда фиксированных уровней износа. При каждом уровне износа вычисляют коэффициенты уравнения регрессии между стойкостью инструмента и элементами режима резания. Зависимости коэффициентов от уровня износа аппроксимируют полиномом.

Проверка методики проводилась при тонком точении стали IIIX 15 резцами с твердосплавными пластинками T14K8 без охлаждения. Режимы резания: скорость v = 360...410 м/мин, подача s = 0,077...0,14 мм/об, глубина резания t = 0,1...0,6 мм. В качестве критерия затупления использовался объемный износ по задней поверхности V (мм 3), определяемый по мето-

Табл. 1. Матрица планирования и результаты эксперимента

Уровень элементов режима резания			Период стойкости инструмента Т, мин при различных уровнях износа					
v	s	t	0,01	0,02	0,03	0,04	0,05	
+	+	+	0,95	2,5	3,9	4,5	4,8	
	+	+	4,00	7,1	9,2	10,4	11,2	
+	_	+	1,5	2,7	4,8	7,1	8,4	
-		+	12,6	15	16,8	18,1	19,3	
+	+	_	2,4	4,2	5,7	7,05	8,3	
_	+	-	7,8	15,7	18,3	19,2	19,8	
+		_	4,7	8,1	10,4	12,3	13,8	
			3,5	7,9	12,8	15,5	17,4	

дике [1]. Исследования проводились по методу полного факторного эксперимента с дублированием в каждой точке. При различных уровнях износа определены периоды стойкости инструмента Т (табл. 1) и коэффициенты уравнений регрессии в нормированном масштабе:

$$T = b_0 + b_1 x_v + b_2 x_s + b_3 x_t + b_{12} x_v x_s + b_{13} x_v x_t + b_{23} x_s x_t + b_{123} x_v x_s x_t.$$

$$(1)$$

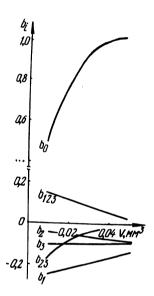


Рис. 1. Зависимости коэффициентов регрессии уравнения (1) от величины износа инструмента.

Значения коэффициентов регрессии

Табл. 2.

Обозначения коэффициен-	Коэффициенты уравнения регрессии (1) при различных уровнях износа V								
тов регрессии	0,01	0,02	0,03	0,04	0,05				
b ₀	0,5000	0,7922	0,9435	1,0158	1,0570				
b ₁	-0,2405	-0,2241	-0,1853	-0,1588	-0,1459				
\mathfrak{b}_2	-0,0506	-0,0348	-0,0587	-0,0732	-0,0802				
b ₃	-0,0812	-0,1065	-0,085	-0,0854	-0,0899				
b ₁₂	-0,0349	-0,0283	-0,0311	-0,0348	-0,0323				
b ₁₃	-0,1003	-0,0401	-0,0305	-0,0360	-0,0392				
b ₂₃	-0,1656	-0,0853	-0,0339	-0,02414	-0,0256				
b ₁₂₃	0,1501	0,1216	0,0752	0,0496	0,0370				

Полученные результаты (табл. 2) показывают, что некоторые коэффициенты, например b_3 , b_{12} , не имеют явной зависимости от величины износа, и их можно принять равными среднему значению в данном интервале износа. Ряд коэффициентов имеет явную зависимость от уровня износа инструмента (рис. 1). Аппроксимировав эти зависимости полиномом, получим

$$b_0 = -415V^2 + 38,28V + 0,1699;$$

$$b_1 = 2,545V - 0,2773;$$

$$b_2 = -0,977V - 0,0302;$$

$$b_3 = -0,0903;$$

$$b_{12} = -0,0323;$$

$$b_{23} = -146,92V^2 + 12,231V - 0,2722;$$

$$b_{123} = -2,983V + 0,1762.$$
(2)

Из уравнения регрессии можно исключить члены с коэффициентами b_{12} , b_{13} , b_{23} , так как в большей части диапазона износа они незначимы. Подставив полученные значения коэффициентов (2) в уравнение (1), получаем зависимость

$$T = -415V^{2} + 38,27V + 0,1699 + (2,545V - 0,2773) x_{v} - (0,977V - 0,0302) x_{s} + 0,0903x_{t} - (2,983V - 0,1762) x$$

$$x x_{v}x_{s}x_{t}.$$
(3)

Предлагаемая методика позволяет вводить в стойкостные зависимости величину допускаемого износа инструмента и не вызывает значительного усложнения стойкостных испытаний. Зависимость некоторых коэффициентов регрессии от величины износа инструмента свидетельствует, что степень влияния отдельных элементов режима резания на интенсивность изнашивания изменяется в течение периода стойкости и с нарастанием износа инструмента оптимум режима резания может смещаться.

ЛИТЕРАТУРА

1. К о чергин А.И., Дечко М.М. Сравнение различных оценок износа инструментов. — В сб.: Приборостроение. — Минск, 1978, вып. 1.