ЛИТЕРАТУРА

1. Сакураи Т., ИкедаС., Окабе Х. Исследование кинетики взаимодействия меченых серусодержащих соединений со сталью в процессе граничного слоя. — В кн.: Новое о смазочных материалах. — М., 1967. 2. Файн Р.С., Кройц К.Л. Химизм граничного трения стали в присутствии углеводородов. — Вкн.: Новое о смазочных материалах. — М., 1967. 3. Чертков Я.Б., Игнатов В.М. Влияние гетероорганических соединений среднедистиллятных топлив на их противоизносные свойства. — Химия и технология топлив и масел, 1970, № 9.

УДК 691.723

Г.Г. ЕЖЕНКОВ, В.Х. ГАЛЮК, В.Ю. ДВОРКИН, П.И. БОРИСКИН, Т.И. САМОДЕЕВА

АНАЛИЗ РЕСУРСА БЫСТРОИЗНАШИВАЮЩИХСЯ ДЕТАЛЕЙ НЕФТЯНЫХ НАСОСОВ

Анализ отказов насосного оборудования нефтеперекачивающих станций показывает, что подавляющее число его остановок происходит из-за отказа небольшой группы узлов и деталей. К этим узлам и деталям, как показывает практика эксплуатации нефтяного оборудования, следует отнести: торцовое уплотнение, лабиринтное уплотнение вала, уплотнение рабочего колеса и подшипники скольжения.

Наиболее сложным по конструкции, а также по условиям работы является узел торцового уплотнения. Контактная пара торцового уплотнения подвергается механическому изнашиванию, при перекачке нефти, содержащей агрессивные компоненты и различные механические примеси, — абразивно-коррозионно-механическому изнашиванию. Срок службы контактной пары в таких случаях минимален.

В связи с тем, что контактная пара является наиболее ответственным узлом, от которого зависит качество работы насоса и его межремонтный период, происходит постоянное совершенствование конструкции и материалов пары трения, направленное на увеличение ресурса торцового уплотнения.

В нефтяных насосах применяют такие пары трения, как сталь 95X18 по графиту 2П-1000 со средним ресурсом 3...5 тыс.ч, сормайт по бронзе с ресурсом 6...7 тыс.ч, но наибольшее применение получили такие пары трения, как силицированный графит СГ-П по СГ-П. Торцовые уплотнения с такими парами трения установлены на большинстве магистральных нефтяных насосов, что позволило повысить ресурс до 14...20 тыс. ч. Находят применение

торцовые уплотнения конструкции УНИ, разработанные Уфимским нефтяным институтом [1].

Срок службы торцовых уплотнений резко сокращается до 0,1...0,3 тыс.ч при перекачке нефти с большим содержанием механических примесей в период размыва парафина в резервуарах и во время чистки нефтепроводов.

Уплотнительные поверхности лабиринтной втулки и втулки защиты вала при нормальных условиях эксплуатации подвергаются эрозионному, а при наличии механических примесей и агрессивных компонентов нефти гидро-абразивно-коррозионному изнашиванию. Продолжительность работы неупрочненных лабиринтных втулок 2,5...3,0 тыс. ч, в отдельных случаях достигает 7...8 тыс.ч. Втулки защиты вала, изготовленные из цементированной и закаленной стали, нарабатывают до 9...10 тыс.ч, не прошедшие термическую обработку -3...4 тыс.ч.

Увеличение щелевого зазора, образуемого перекачиваемой жидкостью, более установленного предела, существенно повышает объем утечек через кольцевую щель, что приводит к росту давления в камере торцового уплотнения и в конечном итоге к тяжелому режиму нагрузок в торцовом уплотнении.

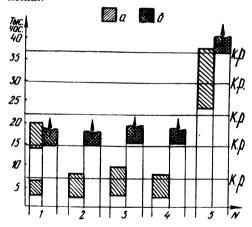


Рис. 1. Диаграмма наработки (тыс.час) серийных и упрочненных деталей (N) магистральных насосов:

а — наработка серийных деталей; б — наработка упрочненных деталей; к.р. — капитальный ремонт насоса; 1...5 — соответственно наработка торцевых уплотнений, лабиринтных втулок, втулок защиты вала, уплотнительных колец, рабочих колес.

Рабочие поверхности уплотнения рабочего колеса подвергаются такому же виду износа, что и поверхность узла уплотнения вала, но вследствие более высоких скоростей скольжения темп износа их выше.

Износ уплотнительных поверхностей кольца и рабочего колеса приводит к увеличению зазора между ними выше допустимого, при этом резко увеличивается объем утечек нефти через уплотнение, снижается объемный к.п.д. и происходит перерасход электроэнергии. Продолжительность работы уплотнительного кольца составляет 2,5...3 тыс.ч в случае перекачивания нефти с незначительным содержанием механических примесей 6...8 тыс.ч.

Выход из строя рабочих колес происходит по причине износа лопаток при нормальных условиях эксплуатации, а при попадании крупных механических включений — из-за поломок лопаток. В случае нарушения режима работы насоса может происходить кавитационный износ, резко сокращающий срок службы рабочего колеса. Рабочее колесо насосов при нормальных условиях эксплуатации имеет наработку 24...38 тыс.ч и не является узлом, лимитирующим межремонтный срок службы насоса. Однако упрочнение попаток рабочего колеса может привести к улучшению технических характеристик насоса (к.п.д. производительности).

Подшипники скольжения подвергаются механическому износу, который происходит в основном в периоды пуска и останова насоса, когда нарушается гидродинамическое трение. Срок службы вкладышей подшипников скольжения составляет 10...12 тыс.ч.

В зависимости от конструкции, производительности, мощности, условий работы нефтяных насосов, а также перекачиваемого продукта ресурс указанных деталей существенно различен. Однако, как показывают исследования, применение таких методов упрочнения, как плазменная металлизация и наплавка различными самофлюсующимися композициями на основе Ni и Cr, позволяет повысить ресурс быстроизнашивающихся деталей насосов при обеспечении срока службы, равного или кратного межремонтным периодам (рис. 1).

ЛИТЕРАТУРА

1. Канание в Л.И., Володин В.Г., Γ олощапов В.Г. Концевые уплотнения роторов центробежных насосов. — Машины и нефтяное оборудование, 1978, \mathbb{N}^2 3.

УДК 621.96

Э.Я. ИВАШИН

ОБ УДАЛЕНИИ СТРУЖКИ ИЗ ЗОНЫ РЕЗАНИЯ ПРИ СВЕРЛЕНИИ

Отвод стружки при сверлении менее благоприятен, чем при других видах обработки, из-за особенностей конструкции сверл и процесса резания. Вид стружки и ее удаление из зоны резания во многом предопределяют производительность процесса при сверлении, что особенно важно при обработке вязких материалов.

На формирование и отвод стружки из отверстия влияют свойства обрабатываемого материала, форма и объем канавок сверла, шероховатость поверхности этих канавок, эффективность способа охлаждения, смазывающие свойства охлаждающей жидкости, температура резания, степень изношенности инструмента и т.д.