АНАЛИЗ ЭРГОДИЧНОСТИ ПРОЦЕССОВ ЗУБОФРЕЗЕРОВАНИЯ И ШЕВИНГОВАНИЯ ЦИЛИНДРИЧЕСКИХ ЗУБЧАТЫХ КОЛЕС

При анализе точности механической обработки в результате опыта получают прерывистые (дискретные) реализации параметров точности изготовленных деталей. Они представляют собой случайные функции дискретного аргумента, которым ввляется номер детали i в порядке обработки или время t_i между обработкой i –й и i+1 деталей.

Построение математической модели периодически повторяющегося технологического процесса с помощью методов корреляционно-регрессионного анализа возможно лишь при условиях его стационарности и эргодичности. Вопросы стационарности процессов зубофрезерования и шевингования цилиндрических зубчатых колес рассматривались нами в работе [1]. Здесь мы остановимся лишь на анализе эргодичности указанных процессов.

Стационарная случайная функция обладает эргодическим свойством, если ее характеристики (математическое ожидание m_{χ} , корреляционная функция $K_{\chi\chi}$ (τ) и дисперсия J_{χ}) мо-гут быть рассчитаны как соответствующие средние по времени для одной реализации большой продолжительности. Иными словами, эргодичность определяет способность процесса к воспроизведению своих характеристик в различных реализациях. Достаточным условием эргодичности стационарной случайной функции (по математическому ожиданию) является

$$\lim_{\tau} K_{\underset{\longrightarrow}{XX}}(\tau) = 0. \tag{1}$$

Это же условие справедливо и для нормированной корреляционной функции $R_{\mathbf{x}\mathbf{x}}(\ \mathbf{z}\)$

Кроме того, условием эргодичности процесса является постоянство в статистическом смысле значений $\mathbf{m}_{\mathbf{x}}$ и Д $_{\mathbf{x}}$ для различных реализаций:

$$m_{\mathbf{x}}(j) = m_{\mathbf{x}} = \text{const};$$
 (2)

$$D_{x}(j) = D_{x} = const, \tag{3}$$

где ј - номер реализации.

Анализ эргодичности рассматриваемых процессов зубообработки был выполнен нами для 13 показателей точности зубча — того венца (F'_{ir} , F_{pr} , F'_{rr} , F''_{ir} , V_{wr} , f'_{ir} , f_{tr} , f_{tr} , f_{pr} , f''_{ir} , f_{tr} , f_{t условиях при соблюдении ряда ограничений, характерных нормальных условий осуществления этих процессов с целью обеспечения их эффективности [1].

Данный анализ производился нами в такой последовательности:

- 1. На одном и том же станке при соблюдении указанных выше ограничений обрабатывалось К (3-5) партий зубчатых колес по 50...100 деталей различными инструментами.
- 2. По результатам измерений деталей производилось построение полученных реализаций случайных последовательностей каждого из рассматриваемых параметров точности венца в порядке обработки. Анализ этих реализаций графическим бом позволяет предварительно оценить эргодичность процесса.
- 3. Для каждой из K реализаций определялись значения \overline{X}_j , $\frac{2}{x_i}$, $\frac{2}{x_i}$, $\frac{1}{x_i}$, $\frac{2}{x_i}$, $\frac{1}{x_i}$, $\frac{1}{x$ ваемого параметра в К партиях зубчатых колес рассчитывались значения \bar{x} , σ_x^2 , $\bar{\sigma}_x^2$:

$$\overline{X}_{i} = \frac{1}{n} \sum_{i=1}^{n} X_{i}; \qquad (4)$$

$$\sigma^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X}_{j})^{2}}{n};$$
 (5)

$$R_{XX}(t,t') = \frac{K_{XX}(t,t')}{\sqrt{D_{X}(t) D_{X}(t')}}; \qquad (6)$$

$$\overline{X} = \frac{1}{K} \sum_{j=1}^{K} X_{j};$$

$$\sigma_{x}^{2} = \frac{\sum_{j=1}^{K} \int_{j}^{\sigma_{x}^{2}} \sigma_{x_{j}}^{2}}{f}$$
(7)

$$\sigma_{\mathbf{x}}^{2} = \frac{\sum_{\mathbf{j=1}}^{\mathbf{\Sigma}} f^{\mathbf{j}} \sigma_{\mathbf{x_{j}}}^{2}}{f} \tag{8}$$

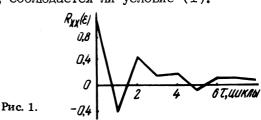
$$f = \sum_{j=1}^{K} f_{j} = K(n-1);$$
 (9)

$$\overline{\mathcal{E}}_{x}^{2} = \frac{n}{K-1} \sum_{j=1}^{K} (\overline{x}_{j} - \overline{x})^{2}. \tag{10}$$

Здесь і - номер детали в партии.

4. С помощью критерия Кохрана определялось, являются ли значения 6^2 оценками одной и той же генеральной дисперсии:

$$g = \frac{\max_{x_1}^{3} \sigma_{x_1}^{2}}{\sigma_{x_1}^{2} + \sigma_{x_2}^{2} + \dots + \sigma_{x_n}^{2}} .$$
 (11)


Если найденное значение g меньше, чем g_{1-p} (для выбранного уровня значимости p), то нулевую гипотезу нужно принять и расхождение между дисперсиями считать незначимым [2].

5. С помощью F -критерия Фишера проверялась гипотеза о том, являются ли значения $\overline{\mathbf{x}}$ оценками одной и той же генеральной средней

$$F = \frac{\overline{\sigma}_{x}^{2}}{\sigma_{x}^{2}}.$$
 (12)

Если $F \not= F_{1-p}(k-1, nk-k)$, то нулевая гипотеза о равенстве всех генеральных средних в совокупности справедлива [2]. В производственных условиях принимали n=100, K=3, $g_{0,05}(3,99) = 0,431$, $F_{0,05}(2,297) = 3,0$, в лабораторных $g_{0,05}(3,99) = 0,458$, $g_{0,05}(3,49) = 0,458$, $g_{0,05}(2,147) = 3,0$.

6. По формуле (6) рассчитывалась R_{xx} (τ) и по ее внешнему виду определялось, соблюдается ли условие (1).

В качестве примера на рис. 1 приведен один из графиков $\mathbf{R}_{\mathbf{x}\mathbf{x}}$ ($\mathbf{\zeta}$). Его внешний вид, как и остальных полученных графиков, указывает на соблюдение условия (1).

8*

Анализ полученных результатов позволяет сделать следуюшие выводы:

- 1. Процессы зубофрезерования и щевингования в рассмотренных условиях для изученных параметров точности прямозубых цилиндрических зубчатых колес наряду со стационарностью обладают и эргодическим свойством.
- 2. Математические модели указанных процессов с точки зрения точности обработки могут быть построены с помощью методов корреляционно-регрессионного анализа по одной реализации достаточно большой продолжительности.

Литература

1. Кане М.М. Анализ стационарности процессов зубофрезерования и шевингования цилиндрических зубчатых колес. - В сб.: Машиностроение, 1980, вып. 4. 2. Пустыльник Е.И. Статистические методы анализа и обработки наблюдений .- М., 1968.

УДК 621.791.92

Г.Я.Беляев, Н.В.Спиридонов, В.А.Протасевич, В.А.Лубочкин

НЕКОТОРЫЕ ОСОБЕННОСТИ УПРОЧНЕНИЯ ТВЕРДЫМИ САМОФЛЮСУЮЩИМИСЯ СПЛАВАМИ ДЕТАЛЕЙ НЕФТЕДОБЫВАЮШЕГО ОБОРУДОВАНИЯ

Повышение износостойкости быстроизнашивающихся деталей, лимитирующих работу нефтедобывающего оборудования, значительно увеличивает межремонтный срок службы, снижает затраты на ремонт и обслуживание. В нефтедобывающих насосах деталями с низким сроком службы являются кольца разгрузки. Для повышения срока их службы были проведены работы по упрочнению методом плазменной металлизации. Одновременно проводились исследования по восстановлению деталей, отслуживших свой срок службы и изготавливаемых из стали 4X13. На рабочую поверхность колец разгрузки, изготовленных из низкоуглеродистой стали, наносилось износостойкое покрытие (самофлю – сующийся твердый сплав ПГ-Ср4 ОМ).

В связи с тем что кольца разгрузки являются тонкостенными деталями, при их упрочнении возникают значительные температурные деформации (в результате разности коэффициентов термического расширения покрытия и основного металла).