
Использование быстроохлажденных металлических материалов для изготовления композитов на основе полимеров

Студенты гр.10405220 Меркуль И.Д., 10405221 Бойко Д.С., гр.10405222 Безбородько П.Д., Котляренко И.В. Научный руководитель – Шейнерт В. А. Белорусский национальный технический университет

Разработка композиционных сплавов с использованием литых неравновесных структур в качестве армирующей фазы является перспективным направлением. В результате ранее выполненных исследований подобраны составы сплавов, разработана методика, изготовлены лабораторные установки и получены образцы быстроохлажденных литых материалов в виде микроволокна и ленты. [1-3]. Их использование для формирования композиционных материалов с матрицей на основе пластиков и резинотехнических изделий позволит повысить физико-механические свойства материала.

На рисунке 1 показана лабораторная установка для получения нитевидных металлических материалов.

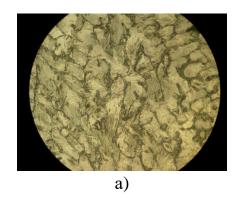
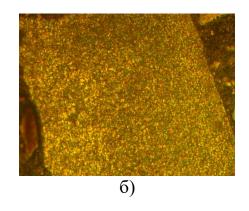




Рисунок 1 — Лабораторная установка для получения линейных нитевидных металлических элементов (a) и опытный образец микроволокна (б) из цинкового сплава (22% Al).

Полученные микроволокна подвергались электронному и оптическому микроструктурному анализу. Для сравнительной оценки влияния скорости кристаллизации на дисперсность микроструктуры анализировались образца данного сплава, отлитого в металлическую форму. Установлено существенное влияние способа кристаллизации сплавов на дисперсность включений интерметалидов, первичное зерно, а также количество пересыщенного твердого раствора (рисунок 2).

x500

Рисунок 2 – Микроструктура цинкового сплава (22% Al) а – литье в кокиль; б – быстроохлажденный.

В дальнейшем образцы полученного микроволокна были переданы в БГТУ для проведения исследований при получении композитов на основе полимеров. Ниже представлены обобщенные результаты исследований влияния микроволокна из сплава Zn-22% Al на кинетику вулканизации эластомерных композиций (таблица 1).

Таблица 1 – Кинетические параметры вулканизации

Наименование наполнителя	Дозировка наполнителя, мас. ч.	МL, дН·м	МН, дН·м	ts2, мин	t50, мин	t90, мин	Rh, дН·м/мин	ΔS, дН·м
Смесь длясравне- ния	_	9,24	47,82	7,92	9,01	12,45	17,01	29,23
Zn-22%Al	5,00	8,50	39,26	14,91	16,85	18,96	10,19	30,76
	10,00	7,48	29,79	13,45	14,91	16,51	8,71	22,31

 Γ де: ML — минимальный крутящий момент, соответствующий минимальному крутящему моменту на вулканизационной кривой, пропорциональный вязкоупругим свойствам резиновой смеси при температуре вулканизации.

MH- максимальный крутящий момент, соответствующий максимальному значению крутящего момента из вулканизационной кривой, пропорционален модулю сдвига резины при температуре вулканизации; характеризует жесткость резины в конце процесса вулканизации.

 ts_2 – время, необходимое для увеличения минимального крутящего момента на 2 единицы. 4 t_{50} – время достижения 50%-й степени вулканизации.

 t_{90} — оптимальное время вулканизации, за которое достигается получение оптимальных свойств вулканизата.

Rh – скорость вулканизации.

 ΔS – разницы между максимальным и минимальным кругящим моментом.

В таблице 2 приведены результаты исследования влияния добавок микроволокна из сплава Zn-22% Al на упруго-прочностные показатели эластомерных композиций до старения

Таблица 2 – Упруго-прочностные показатели ненаполненных резин до старения

		1 1		
	Наименова-	Дозировка	Условная	Относительное
	ниенаполнителя	наполнителя, мас. ч.	прочность прирастя-	удлинениепри разрыве
L	ниснаполнителя		жении f _p , МПа	$\varepsilon_{\mathrm{p}},$ %
	Смесь для		15,1	310
	сравнения	_	13,1	310
Ī	Zn – 22% Al	5,00	13,7	250
		10,00	11,8	330

Упруго-прочностные показатели резин после старения представлены в таблице 3.

Таблица 3 – Упруго-прочностные показатели ненаполненных резин после старения

Tuestingue : inport inportation increase the			
Наименование наполнителя	Дозировка наполни- теля,масс. ч.	Условная прочность при растяжении f_p , МПа	Относительное удлинениепри разрыве ϵ_p , %
Смесь длясравне- ния	_	13,8	196
Zn – 22% Al	5,00	170	11,9
	10,00	235	11,76

В таблице 4 приведены значения коэффициентов старения, рассчитанные наоснове полученных данных об изменении упруго-прочностных свойств в процессе теплового старения (таблицы 2 и 3).

Таблица 4 – Изменение упруго-прочностных показателей

Наименова- ниенаполнителя	Дозировка наполнителя,мас. ч.	Изменение по относительному удлинению при разрывепосле старения,	Изменение по условнойпрочности при растяжении после старения, %
Смесь для сравнения	_	-8,1	-26,2
Zn – 22% Al	5,00	-13,1	-32,0
	10,00	-0,3	-28,8

Результаты исследований твердости резин по ШоруА представлены в таблице 5.

Таблица 5 – Твердость резин по Шору А

Twesting of The Page 11 position and The Page 11				
Наименование наполнителя	Дозировка наполнителя,мас. ч.	Твердость, ед. Шора А		
Смесь для срав- нения	_	71,0		
Zn-22%Al	5,00	67,6		
	10,00	67,1		

Анализ результатов предварительных испытаний композитов на основе полимеров показал, что добавки в их состав микроволокна из сплава на основе цинка, содержащего 22% алюминия, оказывают влияние на такие показатели как условная прочность при растяжении, относительное удлинение до и после старения, а также твердость по ШоруА.

Список использованных источников

- 1. Шейнерт В.А. Гулецкий Н.А., Форнель А.Д., Рудик А.Г. Получение быстро охлажденных сплавов в виде микроволокна для армирования композиционных материалов. Сборник научных работ V Международной научно-практической интернет конференции студентов и магистрантов «Литье и металлургия 2022» Республиканской студенческой научно-технической конференции. 24-25 ноября 2022. с. 10—11.
- 2. Шейнерт В.А., Слуцкий А.Г., Калиниченко А.С., Куис Д.В., Григорьев И.Е. Анализ и выбор сплавов для получения быстроохлажденных металлических элементов с неравновесной структурой// ЛЕСНАЯ ИНЖЕНЕРИЯ, МАТЕРИАЛОВЕДЕНИЕ И ДИЗАЙН Материалы докладов 86-й научно-технической конференции профессорско-преподавательского состава, научных сотрудников и аспирантов 31 января 12 февраля 2022 года Минск С. 28
- 3. Шейнерт В.А., Хорольский П.Д., Рудик А.Г., Кондратьев Е.И. Подбор сплавов на основе черных и цветных металлов для получения неравновесных, метастабильных структур методами высокоскоростной кристаллизации// Сборник научных работ XX111 РСНТК «Новые материалы и технологии обработки» 21-22 апреля 2022г., г.Минск, БНТУ С. 22-25