ТОЧНОСТЬ ОТВЕРСТИЙ И ТОРЦОВ ЦИЛИНДРИЧЕСКИХ ЗУБЧАТЫХ КОЛЕС

Исследовалась точность размеров и формы отверстий цилиндрических зубчатых колес после операций сверления или зенкерования и одно- или двухкратного протягивания, а также биение торцов венцов и их непараллельность после черновой и чистовой подрезки. Черновая подрезка торцов выполнялась на многошпиндельных полуавтоматах вертикального или горизонтального типов, чистовая - на одношпиндельных токарно-многорезцовых полуавтоматах горизонтального типа. Анализировалась обработка зубчатых колес восьми типоразмеров с параметрами m=3...5 мм, $D_e=100...220$ мм, $D_{\rm отв}=40...$ 60 мм. Для исследования каждого типоразмера отбирались две-три партии деталей по 50...60 шт. в каждой. Отверстия в зубчатых колесах имели шлицевую форму с центрированием по наружному или внутреннему диаметру. Измерения выполнялись для центрирующей поверхности в двух взаимно перпендикулярных плоскостях и в двух сечениях по длине отверстия на расстоянии 5...7 мм от торцов ступицы. Отверстия проверялись нутромерами с различными индикаторными головками так, чтобы погрешность измерения не превышала 0,2 допуска на контролируемый параметр. Измерение биения торцов выполнялось на оправках с малой конусностью (1:100) при трех установках детали на оправку. $\hat{\mathbf{B}}$ качестве характеристики биения E_x данного торца принималось

Пока- затель взаи- мо- связи	$D_{\text{ср.зен}} =$ $= f(D_{\text{ср.заr}})$	$D_{\text{cp.cBep}} = $ $= f(D_{\text{cp.3ar}})$	$D_{\text{cp.npot}} = f(D_{\text{cp.cbep}}) = f(D_{\text{cp.3eH}})$	$D_{\text{cp.чист.прот}} =$ $= = f(D_{\text{cp.чep.прот}})$	$Oe_{\text{CBep}} = = f(Oe_{\text{3ar}})$
$\overline{x}/\overline{y}$ r_{xy}	0,960,92 0,490,74	0,880,96 0,490,81	0,860,98 0,360,63	0,980,99 0,330,55	1,71,9 0,280,59
t_r	4,811,9	4,810,4	4,79,5	4,57,3	2,96,5
b	0,220,39	0,220,53	0,180,3	0,120,35	0,160,42
t_b	57,9	56,3	46,1	3,55,4	2,84,1
€ cp	0,10,25	0,210,27	0,421,3	0,452,3	0,313,7
F	0,430,76	0,40,85	0,680,86	0,750,9	0,761
\boldsymbol{A}	44,262,3	46,373,4	51,373,5	52,576,8	64,388,5
В	55,837,7	53,726,6	48,726,5	47,523,2	35,711,5

среднее арифметическое измеренных значений, непараллельности торцов E_l — среднее арифметическое разностей значений E_m .

Обработка полученных результатов производилась с помощью ЭВМ. В табл. 1 и 2 приведены предельные изменения точности отверстий и торцов цилиндрических зубчатых колес до и после различных операций их обработки. Приняты следующие обозначения: $D_{\rm cp}$, O, K, K, — средний диаметр, овальность и конусность отверстия; заг — заготовка; зен — зенкерование; свер — сверление; прот, чер. прот, чист. прот — однократное, черновое и чистовое протягивание; \bar{x} , \bar{y} — средние значения измеряемого параметра точности до и после данной операции; r_{xy} — коэффициент парной корреляции; b — коэффициент в уравнении регрессии $\bar{y} = b\bar{x} + a$, характеризует долю \bar{x} , перенесенную на \bar{y} ; t_r , t_b — критерии Стьюдента достоверности значений r_{xy} и b, при $t \geq 2$,6 достоверность оцениваемых значений гарантируется с вероятностью $P \geq \Phi(t) > 0$,990; $\epsilon_{\rm cp}$ — средняя относительная ошибка уравнения связи y с x (в процентах), F — критерий Фишера адекватности уравнения регрессии (если $F \leq F_{1-a}$; m_1 ; m_2 , то с вероятностью 1-a можно считать, что уравнение регрессии адекватно описывает изучаемый процесс), при a=0,05, b=0, b=1, b

Анализ приведенных результатов позволяет сделать следующие выводы. 1. Точность размеров отверстий цилиндрических зубчатых колес после каждой из рассмотренных операций (сверления, зенкерования, чернового и чистового протягивания) достаточно тесно связана с соответствующими исход-

Таблица 1

<i>Ов</i> _{зен} =	<i>Ов</i> прот = "	<i>Ов</i> чист .прот =	Кон прот =	Кон чист.прот =
$=f(Oe_{3ar})$	$=f(Oe_{crep})=$	$= f(Oe_{\text{qep.npor}})$	$= f(Kon_{3eH})$	$= f(Kou_{\text{qep.npot}})$
	$=f(Oe_{3eH})$			
1,92,2	3,58,6	1,12,1	3,65,5	1,11,9
0,240,61	0,180,32	0,160,25	0,16 0,33	0,120,24
2,76,7	1,32,6	1,21,9	1,22,7	0,91,7
0,180,32	0,030,12	0,10,18	0,050,14	0,050,19
2,93,8	1,12,1	1,22,3	0,92,1	0,92,2
2,577,16	10,934,6	12,125,9	18,545,4	17,238,9
0,830,97	0,961,02	0,960,99	0,891,09	0,91,02
65,290,3	68,391,5	87,295,9	71,483,3	80,695,3
34,89,7	31,78,5	12,84,1	28,616,7	19,44,7

Показатель взаимосвязи	$E_{\text{т.чист.точ}} = f(E_{\text{т.чер.точ}})$	E_{l чист.точ = $f(E_{l} \text{ чер.точ})$	
\bar{x}/\bar{y}	1,9 6,7	1,5 3,7	
r_{xy}	0,35 0,89	0,25 0,68	
t_r	2,9 29,4	2,1 5,3	
b	0,27 0,82	0,15 0,47	
t_b	2,7 13,6	2 4,8	
€ cp	3,9 12,3	4,5 15,7	
F	0,19 0,62	0,71 0,91	
\boldsymbol{A}	21,3 52,7	37,2 74,4	
В	47,3 78,7	25,6 62,8	

ными значениями ($r_{xy}=0.33...0.81;\ B=23.2...55.8\%$), причем эта зависимость носит линейный характер ($\varepsilon_{\rm cp}=0.1...2.3\%,\ F=0.4...0.9$). Поэтому уменьшение разброса значений размеров отверстий после указанных операций может быть достигнуто как за счет совершенствования самих операций (A=44.2...76.8%), так и за счет обеспечения рациональных допусков на размер отверстия на предшествующих операциях.

- 2. Погрешности формы отверстий существенно зависят от исходных значений при черновых операциях сверления и зенкерования ($r_{xy}=0.24...0.61$, B=9.7...35.7%) и мало зависят от них при чистовых операциях чернового и чистового протягивания ($r_{xy}=0.16...0.32$, B=4.1...31.7%). Причем для черновых операций полином первой степени описывает зависимость между погрешностями формы отверстий и исходными значениями ($\varepsilon_{\rm cp}=0.31...7.16\%$, F=0.76...1). Точность формы отверстий после операций сверления и зенкерования тесно связана с точностью формы отверстия в заготовке. Точность формы отверстий после протягивания определяется в основном самой операцией протягивания (A=68.3...95.9%).
- 3. Биение и непараллельность торцов венцов цилиндрических зубчатых колес после чистового точения тесно связаны с исходными значениями этих параметров ($r_{xy}=0,25...0,89,\,B=25,6...78,9\,\%$). Зависимость имеет линейный характер ($\varepsilon_{\rm cp}=3,9..15,7\,\%,\,F=0,19...0,91$). Для повышения точности указанных параметров наряду с совершенствованием операции чистовой подрезки торцов ($A=21,3...74,4\,\%$) необходимо обеспечить рациональные значения этих параметров после черновой подрезки торцов.