текстура $(10\bar{1}0)$. Согласно гипотезе ориентированного роста, межзеренные высокоугловые границы обладают максимальной подвижностью при разориентировке исходного и рекристаллизованного зерен на 25°-40° вокруг общей оси. Угол между илоскостями $(10\bar{1}2)$ и $(10\bar{1}0)$ составляет 33,5°. Таким образом, для образования текстуры $(10\bar{1}0)$ необходим поворот исходной решетки зерен быстрозатвердевших фольг на угол 33,5° вокруг оси $[01\bar{1}0]$. Согласно [3], идеальной текстурой для висмута и сурьмы является (0001). Соответствующая ей линия 0009 также наблюдается в отожженных быстрозатвердевших фольгах сплавов Bi-15 ат.% Sb-(Zn, Al, Ga, In, Ge, Sn, S). Однако, для формирования текстуры (0001) при отжиге необходим поворот решетки зерен при рекристаллизации на угол 56,4° вокруг оси $[0\bar{1}10]$, что объясняет преобладание текстуры $(10\bar{1}0)$ в отожженных быстрозатвердевших фольгах.

Результаты рентгеноструктурного анализа показывают, что в быстрозатвердевших фольгах легированного сплава Bi-15 ат.% Sb при отжиге происходит распад пересыщенного твердого раствора. Температура начала процесса распада зависит от легирующего элемента и от степени пересыщения твердого раствора.

ЛИТЕРАТУРА

1. Гицу Д.В., Голбан Т.М., Канцер В.Г., Мунтяну Ф.М. Явления переноса в мисмуте и его сплавах с сурьмой.- Кишинев: Штиинца, 1983. - 238 с. 2 Осипов Э.В. Твердотельная криогеника.- Киев: Навукова думка, 1977.- 234 с. 3. Вассерман Г., Гревен И. Текстуры металлических материалов.- М.: Металлургия, 1969.- 654 с. 4 Шепелевич В.Г. Текстура быстрозакаленных фольг висмута, сурьмы и их сплавов //Кристаллография.- 1991.- Т.36, №1.- С.238-239. 5. Физическое металловедение /Под ред. Р.У.Кана и П.Хаазена.- М.: Металлургия, 1987.-624 с.

УДК 534.075.8:539.3

А.О.Громыко, О.В.Громыко

ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ СОБСТВЕННЫХ КОЛЕБАНИЙ АНИЗО-ТРОПНЫХ ПЛАСТИН

Белорусский государственный университет Минск, Беларусь

Дифференциальное уравнение собственных колебаний анизотропной пластины на упругом основании в прямоугольной системе координат имеет следующий вид [1]:

$$D_{11}\frac{\partial^4 w}{\partial x^4} + 4D_{16}\frac{\partial^4 w}{\partial x^3 \partial y} + 2(D_{12} + 2D_{66})\frac{\partial^4 w}{\partial x^2 \partial y^2} + 4D_{26}\frac{\partial^4 w}{\partial x \partial y^3} + D_{22}\frac{\partial^4 w}{\partial y^4} - \beta^2 w = 0, \quad (1)$$

где $\beta^2 = (\omega^2 \rho h - k); k$ - коэффициент постели упругого основания; а жесткости изгиба $D_{11} = \frac{h^3}{12\Delta} (a_{22}a_{6}^{\ell} - a_{26}^{2}); D_{22} = \frac{h^3}{12\Delta} (a_{11}a_{66} - a_{16}^{2})$ кручения $D_{66} = \frac{h^3}{12\Delta} (a_{11}a_{22} - a_{12}^{2})$ и дополнительные $D_{16} = \frac{h^3}{12\Delta} (a_{12}a_{26} - a_{22}a_{16}); D_{26} = \frac{h^3}{12\Delta} (a_{12}a_{16} - a_{16}a_{26}),$ $D_{12} = \frac{h^3}{12\Delta} (a_{16}a_{26} - a_{12}a_{66});$ вычисляются с помощью соотношений [2], $\frac{D_{12}}{D_{22}} = \mu_1$ и $\frac{D_{22}}{D_{11}} = \mu_2$ – приведенные коэффициенты Пуассона;

Δ – определитель матрицы коэффициентов обобщенного закона Гука:

$$\varepsilon_x = a_{11}\sigma_x + a_{12}\sigma_y + a_{16}\tau_{xy};$$

$$\varepsilon_y = a_{12}\sigma_x + a_{22}\sigma_y + a_{26}\tau_{xy};$$

$$\gamma_{xy} = a_{16}\sigma_x + a_{26}\sigma_y + a_{66}\tau_{xy}.$$

Круговая частота собственных колебаний определяется формулой $\omega = \sqrt{(\beta^2 + k) \frac{1}{\rho h}}$. В частном случае k = 0 и $\omega = \beta \sqrt{\frac{1}{\rho h}}$.

Выражения погонных силовых факторов, а также граничных условий не отличаются от принятых в теории изгиба пластин [1].

Для прямоугольных пластинок во всех случаях, когда граничные условия не изменяются в пределах каждого из краев, задача может быть решена методом Релея-Ритца или с использованием численных методов, например [3,4].

В практике особенно часто встречается случай ортотропной пластинки, для которого уравнение колебаний является частным случаем (1) и имеет вид

$$D_{11}\frac{\partial^4 w}{\partial x^4} + 2D_{12}\frac{\partial^4 w}{\partial x^2 \partial y^2} + D_{22}\frac{\partial^4 w}{\partial y^4} - \beta^2 w = 0.$$
(2)

Для β^2 сохраняется справедливым (1); а жесткости определяются по формулам: $D_{11} = \frac{E_1 h^3}{12(1-\mu_1\mu_2)};$ $D_{22} = \frac{E_2 h^3}{12(1-\mu_1\mu_2)};$ $D_{12} = D_{11}\mu_2 + 2D_k;$ $D_k = \frac{Gh^3}{12},$ гле G – модуль упругости при сдвиге.

Точное решение задачи известно для случаев, когда две противоположные стороны прямоугольной пластинки оперты, а две другие закреплены произвольно [1]. Если при этом пластинка оперта по всему контуру, то формы колебаний, как и в [2],

 $w = \sum_{n=1}^{\infty} A_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}$, а частотный параметр определяется формулой: $\beta = \pi^2 \sqrt{\frac{m^4}{a^4} D_{11}} + 2 \frac{m^2 n^2}{a^2 h^2} D_{12} + \frac{n^4}{h^4} D_{22} .$

Для основного тона квадратной пластины (a = b, m = n = 1) имеем: $\beta = \frac{\pi^2}{r^2} \sqrt{D_{11} + 2D_{12} + D_{22}}.$

Уравнение (2) в ряде случаев удобно представить таким образом:

$$\eta_1 \frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \eta_2 \frac{\partial^4 w}{\partial y^4} - \beta^2 w = 0, \qquad (3)$$

rge $\eta_1 = \frac{D_{11}}{D_{12}}; \quad \eta_2 = \frac{D_{22}}{D_{12}}; \quad \beta^2 = (\omega^2 \rho h - k) \frac{1}{D_{12}}.$

Тогда частота колебаний определяется формулой $\omega = \sqrt{(\beta^2 D_{12} + k) \frac{1}{ch}}$ или при k=0 $\omega = \beta \sqrt{\frac{D_{12}}{\alpha h}}$

Рис. 1. Схемы закрепления краев пластины

На рис.1 представлены различные схемы закрепления и опирания краев пластины, которые рассматривались в настоящей статье. Заштрихованный край соответствует жесткому защемлению, а параллельные краям линии означают шарнирное опирание пластины по данному краю.

В соответствии с методиками для исследования собственных и вынужденных колебаний механических систем, изложенными в работах [3,4], разработаны алгоритмы и вычислительные программы, позволяющие анализировать формы и частоты свободных колебаний пластин, состоящих из одного или нескольких изотропных или ортотропных слоев.

Результаты, приведенные в табл.1 для расчетных схем, рис.1, получены для различных соотношений изгибных жесткостей квадратных пластин.

Таблица 1

Схема (рис. 1)	D_{11}/D_{12} D_{22}/D_{12}	1/3	1/2	1	2	3
	1/3	25,035	26,741	31,235	38,764	44,837
	1/2	26,741	28,347	32,625	39,776	45,820
a	1	31,235	32,625	36,408	42,939	48,584
	2	38,764	39,776	42,939	48,603	53,661
	3	44,837	45,820	48,584	53,661	58,283
	1/3	22,848	24,706	29,517	37,239	43,652
	1/2	23,796	25,587	30,261	37,864	44,162
б	1	26,361	27,989	32,328	39,543	45,576
	2	30,786	32,191	36,031	42,634	48,330
	3	34,604	35,891	39,393	45,494	50,874
	1/3	21,053	23,049	28,124	35,753	18,707
	1/2	21,440	23,406	28,422	36,383	42,878
В	1	22,567	24,442	29,285	37,062	43,444
	2	24,664	26,396	30,968	38,384	44,622
	3	26,595	28,226	32,507	39,662	45,706
	1/3	20,428	21,483	24,302	29,211	33,057
÷.,	1/2	21,483	22,493	25,194	29,794	33,749
Г	1	24,302	25,194	27,647	31,910	35,599
	2	29,061	29,794	31,910	35,681	39,064
	3	33,057	33,749	35,599	39,064	42,184

Значения параметра Ва²

На рис.2 приведены графики зависимости частотных параметров βa^2 защемленной по контуру квадратной пластинки от параметра η_2 .

Задачи о колебаниях гофрированных пластин, усиленных ребрами или другими элементами жесткости, а также многослойных пластин [1,2] могут быть сведены к задаче колебаний анизотропной (ортотропной) пластины, жесткости которой вычисляются изложенным способом.

ЛИТЕРАТУРА

1. Амбарцумян С.А. Теория анизотропных пластин.-М.: Физматгиз, 1967. – 266 с. 2. Громыко О.В. Многослойные композиты в условиях плоского напряженного состояния и при изгибе//Наука и технологии на рубеже XXI века. Материалы межд. НТК.- Мн.:УП «Технопринт», 2000.-С.417-423. 3. Громыко О.В. Исследование динамики пластин и оболочек в заданных частотных диапазонах //Материалы межд. НТК «Вклад вузовской науки в развитие приоритетных направлений производственнохозяйственной деятельности, разработку экономичных и экологически чистых технологий и прогрессивных методов обучения». Надежность и ресурсное проектирование машин. Т.б.-Минск, БГПА, 2000. 4. Громыко О.В. Автоматизация расчета тонкостенных элементов конструкций//Наука и технологии на рубеже XXI века. Материалы межд. НТК.- Мн.:УП «Технопринт», 2000.-С.244-253.