водородных сред. Диссерт. на соиск, учен, степ, канд, техн, наук, - Мн., 1988, - 235 с. 9. Присевок А. Ф., Овчинников Л. С., Могилин В. И. Автоматизированная оценка пористости напыленных защитных покрытий // Механизация и автоматизация произнодства. - 1988 - № 9. - С. 13-14. 10. Присевок А.Ф., Кураш В.В., Спиридонов Н.В. Биохимический путь выделения водорода при получении продуктов микробиологического производства // Долговечность трущихся деталей машин. Вып. 4. – М.: Машипостроение, 1990. - С. 269-274. 11. Присевок А.Ф., Кураш В.В., Спиридонов Н.В. Исследование механизма водородного изнашивания деталей узлов трения технологического оборудования производства микробиологического синтеза // Долговечность трущихся деталей машин. Вып. 5. - М.: Машиностроение, 1990. - С. 216-224. 12. Шаповалов В.И. Влияние водорода на структуру и свойства железоуглеродистых сталей и сплавов. - М.: Металлургия. 1982. - 230 с. 13. Кураш В.В. Технологическое обеспечение формирования эксплуатационных свойств машин производств микробиологического синтеза // Диссертация на соискание ученой степени канд. техн. наук. Мн., 1991. – 235c. 14. Prisevok A.F., Beliaev G.Ya. Kipnis I.Yu. Timofeev A.V. Mechanism of Metal and Alloy Wearing in Hydrogen - Containing Media, Int. J. Hydrogen Energy. Printed in Great Britain. 1996. – Vol. 21, № 11/12, Р. 1005–1008, 15. Присевок А.Ф. Технология формирования газотермических водородостойких покрытий. Научное издание. - Мн.: ВУЗ - ЮНИТИ БГПА, 1998. - 214 с.

УДК 621.791.92

Т.К. Романова, А.Б. Митрофанова, Д.Л. Кожуро

УСТАЛОСТНАЯ ПРОЧНОСТЬ ДЕТАЛЕЙ, ВОССТАНОВЛЕННЫХ ЭЛЕКРОМАГНИТНОЙ НАПЛАВКОЙ ПОРОШКОВ ИЗ БЫСТРОРЕЖУЩИХ СТАЛЕЙ

Белорусский государственный аграрный технический университет Минск, Беларусь

Основная причина разрушения деталей, работающих в условиях циклического нагружения – усталость металла. Усталостное разрушение начинается с поверхностного слоя, от физико-механических свойств которого зависит в значительной степени предел выносливости. Образовавшиеся в покрытиях при электромагнитной наплавке (ЭМН), электромагнитной наплавке с поверхностно-пластическим деформированием (ЭМН с ППД) и ЭМН с ППД и трехкратным отпуском металлургические дефекты в виде пор, трещин, остаточных напряжений растяжения и другие, а также при последующей механической обработке покрытий царапины, риски, мелкие трещины, шлифовальные прижоги резко снижают усталостную прочность. Эти дефекты, являясь в процессе работы детали концентраторами напряжений, образуют очаги

зарождения усталостной трещины, которая, разрастаясь, приводит к износу детали [1].

Исследования структуры и фазового состава гетерогенных покрытий из порошков быстрорежущих сталей, полученных ЭМН, ЭМН с ППД и ЭМН с ППД и трехкратным отпуском показывают, что они имеют высокую прочность, плотность, однородность, износостойкость, наличие фаз с особыми свойствами. Отсюда следует предположить, что основные эксплуатационные характеристики покрытий могут удовлетворять условиям работы на ответственных деталях, работающих при циклических нагрузках в условиях трения и изнашивания. Поэтому в работе проводились исследования усталостной прочности наплавленных ЭМН, ЭМН с ППД и ЭМН с ППД и трехкратным отпуском поверхностей. При этом исследовалось влияние на усталостную прочность наплавленных поверхностей только метода наплавки и химического состава порошка.

Исследования проводились стандартным методом с построением известной зависимости Велера в координатах σ – lgN, при нагружении в условиях изгиба с вращением консольно закрепленного образца на машине типа У-20М. Критерием выхода из строя являлось разрушение образца под действием знакопеременной нагрузки с постоянной амплитудой.

Образцами служили цилиндрические заготовки из нормализованной стали 45, имеющие соотношение 1/d=15, где 1=150 мм – длина и d=10 мм – диаметр. Образцы с покрытиями порошками P6M5, P6M5Ф3 и P6M5К5, сформированными после ЭМН, ЭМН с ППД и ЭМН с ППД и трехкратным отпуском обрабатывались абразивным шлифованием и магнитно-абразивной обработкой, обеспечивая шероховатость поверхности Ra=0,6...0,8 мкм. Как наплавка исследуемых порошков, так и механическая обработка полученных покрытий производились на оптимальных режимах.

Анализ полученных результатов испытаний показывает, что при циклическом нагружении образцов покрытия имеют различную способность к сопротивлению усталостному разрушению. Это может быть объяснено неодинаковой чувствительностью материалов покрытий к дислокационному скольжению, т.е. к процессам, влияющим на усталостное разрушение.

Установлено, что усталостная прочность наплавленных поверхностей порошками Р6М5К5, Р6М5Ф3, Р6М5 выше эталона (сталь 45, 54...56 HRC) соответственно в 1,40; 1,35; 1,20 раза. Обусловлено это тем, что ЭМН с ППД и трехкратным отпуском формирует в системе покрытие-основа остаточные напряжения сжатия, увеличивает зону термического влияния, приводит к распаду остаточный аустенит и превращает его в мартенсит. Кроме того, происходит выделение дисперсных карбидов и интерметаллидов, блокирующих сдвиги по плоскости скольжения. Это в конечном итоге обеспечивает повышение поверхностной прочности, особенно проявляющейся в покрытиях со структурой: мартенсит, легированные дисперсные карбиды и интерметаллиды.

Кроме того, ЭМН с ППД и трехкратным отпуском уменьшает пористость покрытия, что также повышает усталостную прочность наплавленных поверхностей.

Изучение характера излома наплавленных образцов показывает, что трещины усталости зарождаются как на поверхности образцов, так и в их глубине, т.е. в покрытии и зоне его сплавления с основой. Очаг зарождения трещины зависит от качества покрытия. В покрытиях, полученных ЭМН с ППД, трещины усталости зарождаются, как правило, в зоне сплавления и распространяются в сторону основы. Для изломов характерно непостоянство в их месторасположении по длине образцов, что подтверждает определяющее влияние концентратов напряжений на усталостную прочность, как показано и в работе [2].

Таким образом, проведенные исследования показывают, что для повышения усталостной прочности наплавленных поверхностей деталей машин необходимо производить ЭМН с ППД и трехкратным отпуском порошком P6M5K5.

ПИТЕРАТУРА

1. Витязь П.А., Ивашко В.С., Ильющенко А.Ф. и др. Теория и практика нанесения защитных покрытий. — М.: Беларуская навука, 1998. — 586 с. 2. Кожуро Л.М., Хейфиц М.Л. Управление устойчивостью технологической системы в процессах комбинированной термомеханической обработки//Инженерно-физический журнал. 1995. Т.68. № 4. — С. 654—659.

УДК 621.833.01

А.Т Скойбеда, А.М. Даньков

ОПРЕДЕЛЕНИЕ ОСНОВНЫХ РАЗМЕРОВ ПЕРЕДАЧ С ОСТАВНЫМИ ЗУБЧАТЫМИ КОЛЕСАМИ, ЗАИМОДЕЙСТВУЮЩИМИ С ПРОМЕЖУТОЧНЫМИ КОЛЕСАМИ ВНУТРЕННЕГО ЗАЦЕПЛЕНИЯ

Белорусская государственная политехническая академия Могилевский государственный технический университет Минск, Беларусь

Передачи с составными зубчатыми колесами предназначены для изменения передаточного отношения в процессе функционирования передаточного механизма и образуются парой составных колес, взаимодействующих с промежуточными колесами, в данном случае, внутреннего зацепления. Конструкция составных зубчатых колес и основы теории их взаимодействия с цельными колесами описаны в [1]. Размеры передач с составными зубчатыми колесами определяются прежде всего размерами самих составных колес, а уже затем конструкцией передачи, от выбора которой во многом