мообразования не исключает проведения экспериментальных исследований, подтверждающих возможность получения изделий/деталей с требуемым качеством выбранным методом/способом формообразования.

Формализованный выбор методов формообразования для деталей широкой номенклатуры может быть достаточно легко автоматизирован и может войти составной частью в САПР/АСТИИ.

ЛИТЕРАТУРА

1. Смирнов А.И. Перспективы технологии машиностроения.— М.: Наука, 1992.— 183 с. 2. Дунасв И.М., Смоленцев В.П. Новое в типизации процессов механической обработки.— М.: Машиностроение, 1989.— 48 с. 3. Мисевич В.С., Климентьев А.Л., Гришаев А.Н., Кузьменков С.М. Общий алгоритм связи деталей и технологических процессов // Сб. статей ХХХ научно-технической конференции «Совершенствование технологических процессов и организации производства в легкой промышленности и машиностроении» / Витебский гос. технологический ун-т.— Витебск, 1997.— С. 114—116. 4. Климентьев А.Л. Общий алгоритм связи деталей и технологических процессов // Материалы международной 52-й научно-технической конференция профессоров, преподавателей, научных работников, аспирантов и студентов БГПА «Технические ВУЗы — Республике»: В 7 частях. / Белоруская гос. политехническая академия.— Мн., 1997.— Ч. 2.— С. 11.

УДК 621.787

А.Лабер, С.Лабер

ВЛИЯНИЕ СМАЗОЧНОГО ВЕЩЕСТВА НА ТРИБОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ СФЕРОИДАЛЬНОГО ЧУГУНА ПОСЛЕ ОБРАБОТКИ ППД

Политехника Зеленогурска Зелена Гура, Польша

Одним из основных факторов, влияющих на эксплуатационные свойства деталей, в том числе трибологические, является состояние их поверхностного слоя, который формируется в процессе обработки, в первую очередь, финишной и упрочняющей [1, 2]. Поверхностное пластическое деформирование (ППД) обеспечивает формирование благоприятной топографии поверхности (низкой шероховатости, значительных градиентов относительной опорной длины профиля t_{20} и t_{50}), а также физико-механических свойств поверхностного слоя (измельчения зерен микроструктуры, наклепа, остаточных напряжений сжатия).

Состояние поверхностного слоя зависит от целого рада факторов, в том числе от свойств обрабатываемого материала; характера обработки (статическая, динамическая, осципляционная); типа и конструкции инструмента; режимов обработки и т. д.

В научно-технической литературе подробно рассмотрено влияние упомянутых выше факторов на состояние поверхностного слоя, однако крайне мало сведений о роли смазочного вещества. Традиционно рекомендуется обрабатывать чугун без использования СОЖ, а сталь — с СОЖ в виде смеси масла и керосина.

Ниже представлены результаты исследований закономерностей трения и изнашивания деталей, подвергнутых ППД, в поверхностные слои которых в результате обработки имплантированы вещества, повышающие смазочные свойства масел: соединения на основе оксидов, сульфидов, фосфидов и др. Сформированный поверхностный слой (рис. 1) должен характеризоваться благоприятными трибологическими свойствами. Это обусловлено тем обстоятельством, что имплантированные присадки в процессе эксплуатации активно воздействуют на условия смазывания трущихся поверхностей.

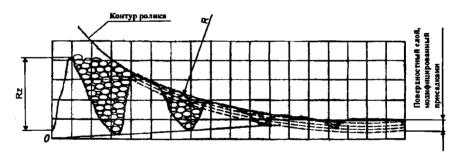


Рис. 1. Схема модификация поверхностного слоя эксплуатационными присадками в процессе ППД

Целью представленной работы было выяснение закономерностей влияния смазочного вещества (масло, присадка) на трибологические характеристики (коэффициент трения и интенсивность изнашивания) обработанной поверхности детали после ППД (обкатки роликом). Исследования выполнялись на деталях из серого чугуна со сфероидальной ферритно-перлитной структурой и твердостью НВ ~ 230.Химический состав чугуна: 3,20% С, 0,329% Мп, 1,941% Si, 0,016% Р и 0,005% S. Обработка ППД выполнялась на токарном станке TUD-50 с помощью специального устройства, основанного на принципе обкатывания вала роликом. Диаметр ролика 50 мм, радиус округления 20 мм. В качестве смазочных веществ и присадок использовались:

- чистое (без каких-либо присадок) масло SN 150;

- моторное масло TITAN CFE 1040 МС, в котором в качестве универсальной присадки находится 3% дисульфид молибдена;
- препарат R-2000 (100%) на базе мягких металлов с антифрикционным действием (меди и свинца);
- препарат MOTOR-LIFE (100%) химического принципа действия.

Трибологические исследования выполнялись на приборе Т-05. В качестве трущегося тела использовались кольца из чугуна, подвергнутого ППД, в качестве контртела – плоские стальные колодки твердостью $60\,HRC$ ($\sim 61\,HRC$). В качестве смазочного вещества во всех случаях использовалось масло SN 150. Исследования выполнялись в два этапа: 1 – приработка с частотами вращения 60, 120, 180 и 240 об/мин (линейная скорость соответственно $\nu = 9,42\,$ м/мин; 18,84 м/мин; 28,26 м/мин; 37,68 м/мин) и силах прижима 30 и 60 H в течение 30 с; 2 – непрерывное трение с частотой вращения 180 об/мин ($\nu = 28,26\,$ м/мин), силой прижима 60 H в течение 1 ч.

Результаты исследований трибологических свойств поверхностей, подвергнутых ППД в присутствии различных смазочных веществ, приведены на рис. 2, 3. Установлено, что наилучшими смазочными свойствами (минимальное сопротивление движению) характеризуются поверхности, сформированные в присутствии присадки МОТОR LIVE, несколько более низкими — в присутствии моторного масла ТІТАN СГЕ 1040 МС. Наихудшие результаты зафиксированы при использовании масла SN 150. Следует отметить, что различия в силах трения для смазочных материалов типов 1, 2, 4 (см. рис. 2) несущественны.

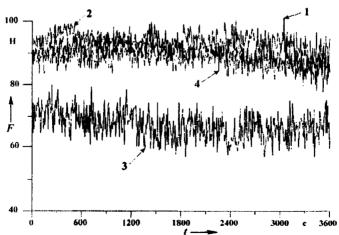


Рис. 2. Характер изменения сил трения на поверхности чугунного образца, подвергнутого ППД с использованием: 1 – масла SN 150; 2 – моторного масла TITAN CFE 1040 MC; 3 – препарата R-2000; 4 – препарата MOTOR-LIFE

Сопротивление поверхности абразивному изнашиванию также значительно зависит от условия смазывания в ходе ППД (рис. 3). Минимальный износ контртела зафиксирован при использовании препарата MOTOR LIVE, затем следуют препарат R-2000 и моторное масло ТІТАN CFE 1040 МС. Наибольший износ имеет место при использовании масла SN 150.

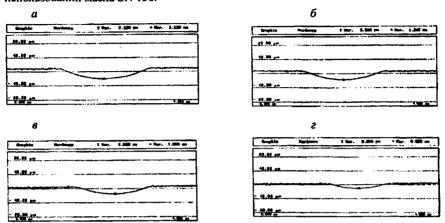


Рис. 3. Характер изнашивания контртел, взаимодействующих с упрочненными поверхностями, в присутствии: а – масла SN 150; 6 – моторного масла TITAN CFE 1040 МС; в – препарата R-2000; г – препарата MOTOR-LIFE

Рассмотренный выше характер изменения сил трения обусловлен ролью смазочного вещества в процессе ППД. Это вещество, благодаря действию процессов адсорбции и хемосорбции смазочных присадок, модифицирует поверхностный слой обработанной детали (см. рис. 1). Смазочное вещество в ходе ППД проникает в поры чугуна, которые становятся своего рода емкостями используемого смазочного материала. Он активизируется в процессе работы деталей, улучшая трибологические характеристики узлов трения.

Проведенные исследования показали целесообразность использования присадок при ППД чугуна, а возможно, и стали. В результате модифицирования поверхностного слоя улучшаются трибологические характеристики узлов трения – снижаются коэффициент трения и интенсивность изнашивания трущихся поверхностей.

ЛИТЕРАТУРА

1. Laber St. Analiza wspolzalezności pomiedzy stanem warstwy wierzchniej a wlasciwościami uzytkowymi zeliwnych elementow maszyn obrabianych nagniataniem.

Monografia 32/85.— Zielona Gora: WSInz. 1985.— 163 s. 2. Przybylski W. Obrobka nagniataniem – technologia i oprzyrzadowanie.— Warszawa: WNT, 1979.— 185 s.

УДК 621.9

СЛабер

ВЛИЯНИЕ СОЖ НА СИЛЫ РЕЗАНИЯ И ИЗНОС СВЕРЛ ПРИ СВЕРЛЕНИИ СТАЛИ

Политехника Зеленогурска Зелена Гура, Польша

Качество обработанных поверхностей, в том числе полученных сверлением, в значительной степени определяет работоспособность деталей. Оно зависит от свойств обрабатываемого материала, режущего инструмента, режимов резания и прочих условий обработки.

В процессе обработки СОЖ способствует отводу теплоты из зоны резания и снижению трения на контактных площадках. Последнее обстоятельство связано с присутствием в СОЖ смазочных присадок. В результате процессов адсорбции и хемосорбции присадки образуют на трущихся контактных поверхностях инструмента и детали смазочные пленки, которые предотвращают возникновение металлических (алгезионных) связей. Кроме того, благодаря малой прочности на сдвиг они снижают коэффициент трения на площадке контакта и интенсивность изнашивания инструмента. Использование СОЖ с улучшенными смазочными свойствами способствует также снижению количества образующейся теплоты.

Смазочные свойства СОЖ зависят от качества и количества находящихся в ней присадок. Как правило, используются присадки типа EP (Extreme Pressure), содержащие вещества, легко вступающие в химические реакции с обрабатываемым материалом, особенно в условиях высоких давлений и температур, имеющих место в зоне резания. В качестве таких присадок используются соединения серы, фосфора, хлора и др. Под действием высоких давлений и температур они разлагаются на простые соединения либо ионы S-, Cl-, P-, взаимодействующие с материалами инструмента и детали.

Правильно выбранная присадка должна полностью разлагаться в зоне резания, а продукты разложения вступать в соединения с металлом. В этом случае обеспечивается максимальный смазочный эффект при минимальной коррозии обрабатываемого материала и инструмента.

В последнее время для модифицирования смазочных материалов, в том числе и СОЖ, используются присадки химического действия, в том числе MotorLife. Автором были выполнены исследования процессов трения в различных условиях [1, 2, 4],