Образец	Корпус		Поршень		Штуцер	
	Sкор.,%	Балл	Ѕкор.,%	Балл	Ѕкор.,%	Балл
Без покрытия	0	10	80	1	90	1
С цинковым покрытием	0	10	40	2	90	1
С оксидированным слоем	0	10	80	1	0	10

Анализ результатов исследований показывает, что изделия, изготовленные из чугуна практически имеют одинаковую коррозийную стойкость без покрытия и с исследуемыми покрытиями. В этом случае основную роль играет их декоративность, а на эксплуатационные свойства изделий покрытие влияния не оказывает. Образцы, изготовленные из стали Ст 5 (поршень) оценивается низкой коррозионной стойкостью при любых видах покрытия, но наиболее лучший результат получен при использовании цинкового покрытия. Испытуемые образцы типа "штуцер", изготовленные из автомобильной стали показали наибольшую стойкость после оксидирования.

ЛИТЕРАТУРА

1. ГОСТ 9.308.85 Испытания на коррозийную стойкость. 2. Новые методы исследований коррозии металлов / Под ред. И.Л. Розенфельда. - М.: Наука, 1983. 3. Михайловский Ю.Н. Коррозия металлов в атмосферных условиях // Коррозия и защита от коррозии. — М.: ВИНИТИ, 1984.

УДК 621.793.1

Ж.А. Мрочек, И.А. Иванов, В.А. Соколовский

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ИСПОЛЬЗОВАНИЯ ВАКУУМНО-ПЛАЗМЕННЫХ СПОСОБОВ ОСАЖДЕНИЯ ПОКРЫТИЙ В ИНСТРУМЕНТАЛЬНОМ ПРОИЗВОДСТВЕ

Белорусская государственная политехническая академия
Минск, Беларусь
Борисовский завод агрегатов
Борисов, Беларусь

По данным специальных исследований мирового рынка режущего инструмента (РИ), проведенных американской фирмой "Frost and Sullivan", в ближайшие 4-5 лет среднегодовые темпы роста мировых продаж РИ составят 4,8%. Ожидается, что в 2003 году они составят 22 млрд долларов против 15,8 млрд долларов в 1996 году [1]. Только в Германии – признанного лидера в области машиностроения – общее производство инструмента (режущего, измерительного, зажимного) в 1998 году выросло на 9,5% [2]. Большое внимание уделяется разработке и производству РИ для скорос-

тного резания. Значительная роль в производстве такого инструмента отводится технологиям упрочнения его рабочих поверхностей. Анализ показывает, что наибольший интерес в последнее время вызывают способы нанесения многокомпонентных композиционных покрытий использующих в качестве рабочего вещества ионно-плазменные потоки, а в качестве рабочей среды – вакуум. Это связано с такими свойствами ионноплазменных потоков, как высокие степень ионизации и энергия конденсирующихся частиц; нахождение элементов в потоке в атомарном возбужденном состоянии, что определяет управляемость потоком; высокой адгезией осаждаемых покрытий с основой и формированием плотных конденсатов. Среди этих методов всё более широкое распространение получают методы осаждения в вакууме, обладающие, кроме уже перечисленных, такими основными преимуществами как технологическая и экологическая чистота процесса, нанесение покрытий, отличающихся по своему химическому составу от материала подложки, возможность комбинирования методов осаждения и простота управления ими, низкие температуры подложки. Кроме этого, вакуумные технологии находятся на переднем крае научно-технического прогресса, следовательно, их освоение в инструментальном производстве будет способствовать повышению конкурентоспособности изготавливаемого РИ [3]. Для более эффективного использования данных методов упрочнения в инструментальном производстве надо знать не только их технологические возможности, но и сравнительные экономические показатели.

Цель работы — систематизировать имеющиеся в технической литературе сведения по эффективности использования вакуумно-плазменных технологий в машиностроении и инструментальном производстве.

В научной и технической литературе существующие вакуумно-плазменные методы нанесения покрытий в вакууме делят на методы катодного распыления, ионного осаждения и электродугового испарения в вакууме.

Катодное распыление. Суть метода состоит в распылении катода-мишени ионами газоразрядной плазмы с последующим осаждением атомов распыленного материала на поверхность детали. Коэффициент ионизации потока порядка 1%, энергия распыляемых частиц 1–3 эВ. Коэффициент использования материала близок к 100 %. Однако, расстояние между мишенью и деталью должно быть небольшим, что накладывает ограничения на размеры обрабатываемой заготовки. Плазмообразующим газом, давление которого в разрядном промежутке составляет 10-1 Па, являются инертные газы (например, аргон) или смесь инертного и реакционного газа (например, смесь азота или ацетилена с аргоном), что позволяет получать на поверхности конденсации как металлические покрытия так и покрытия из карбидов или нитридов. Адгезия получаемых покрытий существенно выше адгезии вакуумных конденсатов. Недостатком способа является низкая скорость осаждения покрытий 0,005–0,3 мкм/мин (10-9 м/с). Разновидностью катодного распыления является магнетронный метод, позволяющий увеличить скорость осаждения покрытий до 10-7 м/с.

Ионное осаждение. Разновидность термического испарения в вакууме с ионизацией паров в плазме тлеющего разряда, поддерживаемого между испарителем и подложкой, сочетает в себе высокие производительность (до 20 мкм/мин) и хорошую адгезионную прочность к основе получаемых покрытий. Плотность ионного тока до 2 мА/см². Напряжение на разрядном промежутке от 1 до 10кВ, давление аргона в вакуумной камере 0,1–6 Па. Коэффициент ионизации –0,035–2%. Энергия нейтральных частиц превышает энергию таких же частиц при вакуумном осаждении покрытий. К недостаткам способа стоит отнести использование относительно громоздкого и дорогостоящего высоковольтного оборудования для испарения мишени, дополнительной ионизации парового потока и активации поверхности основы перед нанесением покрытий. Метод требует учета фракционирования компонентов при испарении многокомпонентных сплавов. Для преодоления этих трудностей при нанесении многокомпонентных покрытий разрабатываются методы взрывного испарения малых навесок и диффузионный отжит предварительно нанесенных многослойных композиций [4].

Электродуговое испарение в вакууме. Стадия генерации в рассматриваемом способе нанесения покрытий обеспечивается за счёт эрозии одного из электродов в вакуумной электрической дуге. При этом имеет место самогенерация, т.е. среда необходимая для поддержания разряда возникает вследствие испарения материала электрода и дуга горит в его парах. Процесс испарения сопровождается интенсивной ионизацией, степень которой зависит от материала эродирующего электрода, и может составлять от 12–15% для легкоплавких металлов, до 50–100% для тугоплавких металлов. Процесс вакуумного электродугового нанесения покрытий включает две основные операции: ионную очистку поверхности детали и конденсацию материала покрытия. Процесс конденсации осуществляется сразу после ионной очистки путем уменьшения значения ускоряющего потенциала, т.е. снижения энергии конденсирующихся ионов [3]. Основные сравнительные показатели рассмотренных методов сведены в табл. 1.

Таблица 1 Сравнительная характеристика вакуумно-плазменных методов

Сравниваемые параметры	Катодное распыление	Ионное осаждение	Электродуговое испарение
Рабочее давление, Па	10 ⁻¹ 10 ⁰	0.16	10-310-2
Степень ионизации потока, %	110	2	10100
Энергия частиц, эВ	120	13	101000
Состав потока	Ионы, атомы	Ионы, атомы	Ионы, атомы капли
Производительность, мкм/мин	5x10 ⁻³ 3	До 20	0.11
Другие особенности	Ограничения на размер подложки, коэф. ругие особенности использования 100%, использование реакционного газа		Высокая управ- ляемость потоком, использование реакционного газа

Рядом исследователей был проведен сравнительный анализ вакуумных ионноплазменных методов нанесения покрытий как друг с другом так и с другими методами получения защитных покрытий широко используемых в различных отраслях машиностроения. Так, в [5] проведено сравнение по плотностям потока осаждаемых частиц (\mathbf{j} , ат/($\mathbf{c}\mathbf{m}^2$.с)) и средним кинетическим энергиям направленного движения конденсирующихся частиц (\mathbf{E} , э \mathbf{B}) для способов термического испарения, катодного и магнетронного распыления, ионного и плазменного осаждения, металлургических и газотермических методов. Показано, что методы ионно-плазменного осаждения имеют наибольшие значения сравниваемых величин ($\mathbf{j} = 10^{17}$ – 10^{23} aт/($\mathbf{c}\mathbf{m}^2$.с); $\mathbf{E} = 10$ –1000 э \mathbf{B}). Способ магнетронного распыления при тех же плотностях потока осаждаемых частиц имеет значительно меньшее значение средней кинетической энергии направленного движения конденсирующихся частиц ($\mathbf{E} = 0,1$ –10 э \mathbf{B}). Газотермические и металлургические способы, превосходящие все другие по плотностям потока осаждаемых частиц (\mathbf{j} до 10^{26} ат/($\mathbf{c}\mathbf{m}^2$.с)), значительно уступают плазменным методам по энергиям частиц потока (\mathbf{E} менее 10^{-2} э \mathbf{B}).

В [6] было проведено сравнение некоторых свойств покрытий формируемых разными способами. Показано, что покрытия из хрома осаждаемые способом магнетронного распыления имеют значительно более высокую прочность сцепления с основой чем покрытия полученные газопламенным, электрохимическим методами или наплавкой. При этом коэффициент использования материала может достигать 0,95 [7]. В сравнении с гальваническими методами нанесения металлических пленок, электродуговые методы обладают лучшими экономическими показателями по производительности и затратам электроэнергии (табл. 2).

Таблица 2. Сравнение параметров различных методов осаждения покрытий

сравниваемые параметры	гальванический способ	Электродуговой способ	
скорость нанесения никеля, (мкм/мин)	0.24	0.4	
толщина покрытия, (мкм)	40	15	
время нанесения покрытия, (ч)	3	1	
потребляемая мощность, (кВт)	15	8	
удельный расход электроэнергии, (кВт.ч/дм²)	0.3	0.15	
удельный расход электроэнергии на перенос 1 г вещества, (кВт.ч/г)	90	45	

Представляет интерес систематизация данных по количественному сравнению различных способов нанесения покрытий в вакууме (по пятибалльной системе) [8]. Сравнения проводились по свойствам формируемых покрытий, по особенностям технологии, по материалу покрытия и по стоимости оборудования. Наибольший балл присваивался наиболее технологичному параметру, а наименьший параметру, с точки

зрения которого оцениваемый метод неприемлем. Анализ показывает, что наиболее дорогими среди методов нанесения покрытий в вакууме являются технологии ионного осаждения, которые однако по свойствам формируемых покрытий и по материалу покрытия имеют наибольшее преимущество.

Приведенные данные говорят о том, что чем более высокую степень ионизации и энергию частиц потока допускает метод, тем более перспективным и универсальным является он для машиностроения. В сравнении с традиционно используемыми в инструментальном производстве металлургическими методами (ХТО) и методами химического осаждения, вакуумно-плазменные способы осаждения поверхности наиболее полно отвечают требованиям формирования на рабочих покрытий РИ плотных конденсатов с высокими эксплуатационными свойствами.

ЛИТЕРАТУРА

1.Спрос на металлорежущие инструменты будет расти// Деловой визит. — 1999. — № 5.— С.54. 2. Stagnation auf hohem Niveau/ Sengebusck W.// Werkzeuge. — 1999. — Sonderpubl. № 1.— Р.70, 72. 3.Емельянов В.А., Иванов И.А., Мрочек Ж.А. Вакуумноплазменные способы формирования защитных и упрочняющих покрытий.— Мн.: БЕСТПРИНТ, 1998.— 284 с.. 4. Вакуумные покрытия в машиностроении.— 1981.— 40 с. 5. Барвинок В.А. Управление напряженным состоянием и свойства плазменных покрытий.— М: Машиностроение, 1990.— 383 с. 6. Зеленин В.А., Миньков А.Л. Перспективы развития и использования вакуумных методов нанесения покрытий// Ресурсосберегающие технологии/Под ред. А.И.Свириденко, Гродно, БИТА, 1995.— Ч. 2. С. 103–109. 7. Плазменные и лазерные методы упрочнения деталей машин/Н.В.Спиридонов и др. Под ред. В.Н.Чачина.— Мн.: Выш.шк., 1988.— 56 с. 8. Костржицкий А.И., Лебединский О.В. Многокомпонентные вакуумные покрытия.— М.: Машиностроение, 1987.—207 с.

УДК 621.785.048:669

Н.В. Спиридонов, А.С. Володько, В.В. Зенкевич, Л.И. Пилецкая

УПРОЧНЕНИЕ НИКЕЛЬ-ТИТАНОВЫХ ПЛАЗМЕННЫХ ПОКРЫТИЙ С ИСПОЛЬЗОВАНИЕМ ЛАЗЕРНОЙ ОБРАБОТКИ

Белорусская государственная политехническая академия Минск, Беларусь

К основным контролируемым параметрам газотермических покрытий относится адгезия покрытий к основе – одна из наиболее важных прочностных характеристик, влияющих на эксплуатационные свойства поверхности деталей машин и оборудования. Она определяется характером механо-физико-химических процессов взаимодей-