уравнений для расчета оболочек с конечной сдвиговой жесткостью. І.Исходные соотношения. – Весці нацыянальнай акадэміі навук Беларусі. №2, 1999, с. 98–102. 3. Скойбеда А.Т., Громыко О.В. Матричная форма уравнений для расчета оболочек с конечной сдвиговой жесткостью. ІІ.Система уравнений равновесия в перемещениях и их решение. –Весці нацыянальнай акадэміі навук Беларусі. №2, 1999, с. 103–108.

УДК 539.22.002.3

О. В. Громыко

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ КОЛЕБАНИЙ НЕСУЩЕЙ ФЕРМЫ РАДИОТЕЛЕСКОПА

Белорусская государственная политехническая академия Минск, Беларусь

Определение динамических характеристик машиностроительных конструкций с использованием методов вынужденных гармонических колебаний и свободных колебаний широко распространено в практике лабораторных испытаний. Это обусловлено ясными теоретическими основами методов, позволяющих определять достоверные значения искомых величин. Метод свободных колебаний предусматривает анализ колебаний системы, вызванных начальным возмущением определенного типа: в виде импульса, начального прогиба или возбуждения в резонансе с его последующим снятием. Для систем с незначительной жесткостью, к числу которых относятся ферменные конструкции [1, 2] радиотелескопов (РТ), наиболее предпочтительным является второй способ. Для реализации третьего способа требуется сложная виброаппаратура и частотные анализаторы переходных процессов. В резонансном методе конструкция возбуждается гармонической силой. Измеряются амплитуды колебаний различных точек конструкции в зависимости от частоты. Искомые динамические характеристики получаются путем анализа резонансных пиков амплитудно-частотных характеристик. Резонансный режим колебаний достигается плавным изменением частоты возбуждающего усилия. Формы колебаний на основании измерения амплитуд в различных точках конструкции при резонансной частоте.

Основная трудность при определении собственных частот реальных конструкций резонансным методом состоит в том, что резонансные пики не совпадают точно с собственными частотами, а несколько смещены. Этот эффект объясняется влиянием диссипативных сил и нерезонансных тонов колебаний, близостью собственных частот конструкции, нелинейностью её поведения при больших усилиях возбуждения. Оценить смещение пиков амплитудно-частотных характеристик при испытаниях PT-5 [3] оказалось невозможным вследствие сложной взаимосвязи параметров. Существенным недостатком этого метода является также возможность пропуска одного из тонов колебаний конструкции в случае расположения вибратора или виброизмерителя вблизи узла колебаний, особенно при близких собственных частотах. Предварительные динамические испытания АБ PT-5 выявили сильную зависимость амплитудно-частотных характеристик от величины возбуждающего усилия и области его приложения в симметричных узлах конструкции. Кроме того, низшие частоты собственных колебаний антенны оказались близкими к нижнему пределу рабочего диапазона вибратора.

В процессе предварительных испытаний при исследовании динамических характеристик АБ РТ-5 оказался эффективным метод свободных колебаний. Схема установки для определения динамических характеристик АБ РТ эти методом приведена на рис.1.

Puc. 1.

Колебания конструкции возбуждались заданием начального прогиба в точке С и мгновенным устранением его. Прогиб задавался при помощи грузов G, соединенных с точкой конструкции С гибкой тягой через систему блоков. Величина начального прогиба изменялась в зависимости от суммарного веса грузов. В результате быстрого снятия нагрузки (перерезывалась нагружающая тяга H) в конструкции РТ-5 возбуждались свободные колебания. Время снятия связи измерялось при помощи тензокольца D, встроенного в тягу. Преобразование процесса колебаний в электрические сигналы осуществлялось акселерометрами (B) ДУ-5, работающими в комплекте с виброизмерительной аппаратурой ВИ6-6TH. Регистрация сигналов осуществлялась светолучевым осциллографом K-121. На фотоленте вместе с осциллограммами, соответствующими исследуемому процессу, одновременно фиксировался процесс освобождения наложенной связи, регистрируемый тензоизмерителем D. Усилителем-преобразователем для сигнала с тензокольца являлся тензоусилитель 8АНЧ-7М. Для выделения исследуемых тонов из суммарного сигнала полоса пропускания аппаратуры ВИ6-6TH была ограничена диапазоном 0-30 Гц при помощи сменных фильтров, входящих в комплект аппаратуры.

При испытаниях АБ РТ-5 использован метод многоточечного возбуждения свободных колебаний конструкций. Задача состояла в подборе такого силового воздействия, при котором практически возбуждался единственный тон колебаний. Здесь начальный прогиб задавался одновременным приложением сосредоточенных сил в различных узлах конструкции таким образом, чтобы начальная изогнутая форма соответствовала форме исследуемых собственных колебаний.

При исследовании осесимметричных колебаний нагрузка прикладывалась в трех симметрично расположенных точках V (V' - второй вариант опирания) отражающей поверхности РТ-5, рис.2.

Puc. 2.

Нагрузка от подвешенного на фокальной оси груза при помощи гибких упругих нитей через опорную пирамиду и систему блоков передавалась в точки возбужде-

ния V (V'). Прикладываемые в узлах силы определялись массой грузов, изменявшейся от 5 до 11 кг. В результате предварительных испытаний установлено, что время снятия нагрузки значительно меньше периода собственных колебаний конструкции и практически не влияет на результаты экспериментов. Для исключения погрешностей, вносимых ударной нагрузкой от снимаемых связей, обработка осциллограмм начиналась со второй четверти периода колебаний. В дальнейших экспериментах тензокольцо D было снято. Колебания фиксировались шестью датчиками ускорений ДУ-5. Для построения формы собственных колебаний, соответствующей исследуемому тону, эксперимент повторялся многократно. При этом условия возбуждения конструкции сохранялись, а изменялись лишь узлы крепления акселерометров. Форма колебаний определялась величинами амплитуд в различных точках конструкции для одного момента времени. При исследовании изгибных колебаний АБ РТ-5 усилия возбуждения и оси максимальной чувствительности датчиков ускорений устанавливались по нормали к отражающей поверхности. Изменение массы грузов от 5 до 11 кг не отразилось на величинах определяемых частот и характере форм собственных колебаний.

При динамических испытаниях PT-5 исследовались собственные частоты, формы и коэффициенты демпфирования осесимметричных изгибных колебаний AБ без облучателя при двух вариантах крепления антенны и двух вариантах ориентации конструкции в поле сил тяготения: отражающей поверхностью вверх и вниз (фокальная ось вертикальна). В первом варианте каркас антенны закреплялся за три ближайшие к фокальной оси точки установочной поверхности α, во втором – за три узла α' следующего пояса, рис.2.

Формы осесимметричных колебаний, соответствующие частоты f и логарифмические декременты затухания колебаний δ АБ РТ-5 в исследуемых случаях приведены на рис. 3, 4. Здесь на развертке отражающей поверхности в каждом шарнирном узле вправо отложены положительные, влево – отрицательные отклонения в момент времени, когда контрольный датчик в одной из угловых точек давал максимальные значения.

На рис.3 представлена форма осесимметричных колебаний конструкции, отражающая поверхность которой обращена вверх, при первом варианте закрепления за три ближайшие к фокальной оси узла установочной поверхности антенны. Последние отмечены кружками. При аналогичном закреплении РТ-5, когда отражающая поверхность обращена вниз, получена форма колебаний, совпадающая с приведенной на рис. 3. При различной ориентации конструкции в поле сил тяготения совпали также частоты и логарифмические декременты собственных колебаний антенны. Результаты второго эксперимента на отдельном рисунке не показаны.

Поскольку изменение положения АБ в гравитационном поле не повлияло на динамические характеристики стержневой системы рефлектора, испытания конструкции РТ-5 при втором варианте закрепления проведены лишь для случая, когда отражающая поверхность обращена вниз. Частота, форма и логарифмический декремент затухания собственных колебаний антенны, полученные в этом эксперименте, приведены на рис. 4. Пунктирными линиями отмечены отклонения отражающей поверхности за плоскость, сплошными – из плоскости чертежа. Сплошная замкнутая линия соответствует узловой линии формы колебаний. Отметим, что проведение испытаний конструкции РТ-5 модифицированным методом свободных колебаний стало возможным благодаря уменьшению демпфирования в узлах за счет применения накладок.

Puc.3

Puc.4

Полученные экспериментальным путем результаты позволили доказать применимость континуальной модели при расчетах регулярных стержневых машиностроительных конструкций. Для сопоставления результатов исследования собственных колебаний АБ РТ-5, полученных в эксперименте и путем численного расчета, построена континуальная расчетная схема, аналогичная принятой в [1, 2]. В качестве жесткостных характеристик поясных и диагональных стержней использованы результаты статических испытаний (табл.1): $(EF)_{nosc}=35.4\cdot10^4$ H, $(EF)_d=26\cdot10^4$ H. Радиус средней поверхности трехслойной сферической оболочки, моделирующей АБ РТ-5, принят равным R=4,621 м, толщина пакета – h=0,562 м. Вблизи полюса, при $\alpha_0=0,01^\circ$, накладывались условия замыкания (симметрии), а на краю, при $\alpha_k=25,3^\circ$, – условия, соответствующие свободному краю. Полученное отношение мембранной жесткости континуальной модели B_{11} к массе единицы поверхности i_1 характеризуется параметром $\sqrt{B_{11}/i_1} = 780,89 \ \text{м/c}$, а относительная инерция вращения поперечных сечений – $i_2/i_1h^2 = 1,32$.

Таблица 1.

Этап нагружения	Состояние шарнира поясного стержня Накладки: а) ослаблены; б) подтянуты; в) отсутствуют						HLIŘ (a.I.b- ří CERb
	Типичный поясной стержень			Область шарнира поясного . стержня			HILINY HILI HELI
	a	б	В	a	б	В	F R o
1	28,8	71,3	16,8	15,1	29,2	9,5	26
2	37,4	62,1	34,2	15,7	25,6	10,4	26
3	40,5	68,2	29,4	16,6	27,4	10,1	26
C	остояние	Статистические оценки жесткости поясных стержней					
шарнира Оценка		a		б		В	
$\overline{M}(EF)_{ssc}, H$		35,4·10 ⁴		69,2·10 ⁴		30,5·10 ⁴	
$\overline{D}(EF)_{_{3\kappa c}}, H^2$		11,9·10 ⁹		37,6·10 ⁹		14,9·10 ⁹	
$\overline{\sigma}(EF)_{_{_{\mathfrak{HC}}}},H$		10,6·10 ⁴		19,4·10 ⁴		12,2.104	

При исследовании собственных колебаний модели, соответствующей первому варианту закрепления, условия, запрещающие нормальные *w* и тантенциальные *u* перемещения внешней поверхности (z=h/2) оболочки, накладывались для промежуточной опоры $\alpha_{on}=2,21^{\circ}$. Для второго варианта закрепления условия промежуточной опоры накладывались при $\alpha_{on}=6,32^{\circ}$. Результаты численного расчета частот и форм собственных колебаний приведены на рис.5 соответственно для первого (a) и второго (б) условий закрепления. Формы колебаний построены для средней поверхности континуальной модели, поэтому узлы прогибов и меридиональных перемещений не совпадают.

Из сопоставления форм колебаний, полученных экспериментальным путем и численным методом по континуальной схеме, следует их качественное совпадение. Частоты колебаний при этом отличаются в сторону завышения в первом случае на 8,5%, во втором – на 4,9%, что вполне согласуется с принципом Рэлея. Отметим, что математическое ожидание жесткости поясных стержней вычислено по результатам испытаний лишь 10 стержневых элементов, т.е. 2,3% от общего количества поясных стержней АБ РТ-5. Среднеквадратическое отклонение жесткости даже по данным проведенного эксперимента составило значительную величину (до 40%). В связи с этим возможно отличие собственной частоты, полученной расчетным путем, ввиду большого разброса жесткостей стержней и отличия использованной в расчетах жесткости $EF=35, 4\cdot 10^4 H$ от средней жесткости типичного стержня конструкции.

Кроме описанных результатов испытаний и соответствующих расчетов конструкции при осесимметричных колебаниях, проведены исследования других тонов

изгибных колебаний с одной и двумя волнами в окружном направлении. Отмечено значительное отличие экспериментальных и расчетных данных, объясняемое быстрой изменяемостью НДС АБ РТ-5 в пределах «редкой» фермы, имеющей лишь пять стержневых пролетов от центра ее к краю. Последнее обстоятельство существенно ограничивает применимость предложенной континуальной модели к расчету более высоких тонов собственных колебаний данной конструкции.

Puc.5 a.

На основании проведенного сопоставления можно сделать следующий вывод. При медленно изменяющемся НДС вдоль элементарных ячеек регулярной фермы расчет ее по континуальной схеме является обоснованным. Удовлетворительное совпадение экспериментальных данных и результатов расчета конструкции по схеме континуума подтверждает возможность применения континуальных моделей при исследовании многопролетных регулярных ферменных конструкций, нагрузка на которые по их площади изменяется плавно.

ЛИТЕРАТУРА

1. Громыко О.В. Анализ точности расчета регулярных ферм типа тонкостенных конструкций по континуальной схеме. – В кн.: Материалы II Белорусского конгрес-

277

са по теоретической и прикладной механике. Минск, 1999, с.66–67. – Гомель: ИММС НАНБ, 1999. 2. Громыко О.В. Аналитические оценки частот собственных колебаний регулярных ферм типа пластин. – В кн.: Современные проблемы машиноведения. Материалы международной научно-технической конференции (научные чтения, посвященные П.О.Сухому), с. 38–39. – Гомель: ГПИ, 1996. 3. Громыко О.В. Экспериментальное исследование жесткостных характеристик стержневых элементов радиоастрономической антенны РТ-5. – Материалы межд. НТК «Наука и технологии на рубеже XXI века». - Минск: БГПА, 2000.

Ξġ