
183

UDC 004.4

SPEEDUP OF BLOCKS CALCULATION IN BLOCKED FLOYD-

WARSHALL ALGORITHM

Prihozhy A. A.

Belarusian National Technical University,

Minsk, Belarus, prihozhy@yahoo.com

Finding shortest and longest paths in graphs [1–8] solves optimization problems

in many application domains. Based on the classical Floyd-Warshall algorithm

(FW) [9], the blocked Floyd-Warshall Algorithm 1 (BFW) was developed in works

[10–19] by means of decomposing the matrix D[N×N] of shortest path distances in a

weighted graph into the matrix B[M×M] of blocks Bv,u[S×S], where N is the number

of graph vertices, S is the block size, M = N / S, and v, u = 0…M1. In BFW, all

blocks are calculated by the universal Algorithm 2 (BCA), which is in fact FW with

three input blocks B1, B2 and B3and one output block B1. In BFW, there are four calls

of BCA with different arguments. In the D0 call, all three arguments are copies of the

same block Bm,m. In the C1 call, two arguments are copies of block Bv,m, and one ar-

gument is block Bm,m. In the C2 call, two arguments are copies of block Bm,v, and one

argument is block Bm,m. In the P3 call, all arguments are unique blocks Bv,u, Bv,m and

Bm,u. In the calls, BCA consumes different input data of different overall size. There-

fore. we develop a unique algorithm for each call, which replaces BCA during the

BFW execution. We refer to such a modification of BFW as a heterogeneous blocked

shortest paths algorithm, briefly HET.

Tab. 1 describes storage consumption per iteration of the loop along k, and the

overall storage consumption over all loop iterations. Here we assume that all ele-

ments of block B1 are processed within each iteration, block B2 is accessed within

each iteration row by row, and block B3 is accessed within each iteration column by

column. BCA consumes the amount S3 of storage while calculating the D0 and con-

sumes the amount S3 + 2S2 of storage overalls while calculating the P3 block.

Algorithm 1: Blocked Floyd–Warshall (BFW)

Input: A number N of graph vertices

Input: A matrix W[NN] of graph edge weights

Input: A size S of block

Output: A blocked matrix B[MM] of path distances

BWM N / S

form 0 toM1 do

Bm,m
m+1BCA(Bm,m, Bm,m, Bm,m) // D0

forv 0 toM1 do

ifvmthen

Bv,m
m+1BCA(Bv,m, Bv,m, Bm,m) // C1

Bm,v
m+1BCA(Bm,v, Bm,m, Bm,v) // C2

forv 0 toM1 do

184

if v m then

foru 0 toM1 do

if u m then

Bv,uBCA(Bv,u, Bv,m, Bm,u) // P3

returnB

Algorithm 2:Block calculation (BCA)

Input:S is size of block

Input:B1, B2, B3 are input blocks

Output:B1 is recalculated block

fork 0 toS - 1 do

fori 0 toS - 1 do

forj 0 toS - 1 do

sumb2
i,k + b3

k,j

ifb1
i,j>sumthenb1

i,jsum;

returnB1

Table 1 – Storage consumption by four types of blocks

Block type
Per iteration of loop along k

Over all iterations
Input B1 Input B2 Input B3

D0 S2 – – S3

C1 S2 – S S3 + S2

C2 S2 S – S3 + S2

P3 S2 S S S3 + 2S2

Calculating diagonal block. Our new algorithm D0_A calculates block B1 in

stepwise manner while adding vertices to a graph and adding row k and column k to

matrix B1. Fig. 1 illustrates the transition from matrix B1(k – 1) to matrix B1(k) in a

loop along k. First, element b1
ik is calculated over b1

ij and 1bjk and element b1
kj is cal-

culated over b1
ki and b1

ij for i, j = 0…k– 1. Second, element b1
ij is recalculated over

b1
ik and b1

kj for i, j = 0…k – 1. Algorithm 3 completely describes D0_A.

Figure 1 – Calculating diagonal block B1(k) over B1(k – 1) – algorithm D0_A

185

Calculating vertical block of cross. Our new algorithm C1_A calculates block B1

over block B3 in stepwise manner while adding a vertex to a graph and adding a col-

umn k to matrix B1. Fig. 2 illustrates the transition from matrix B1(k – 1) to matrix

B1(k) in a loop along k. First, element b1
ik of B1 is calculated over b1

ij of B1 and b3
jk of

B3 for i = 0…S – 1 and j = 0…k – 1. Second, element b1
ij of B1 is recalculated over

b1
ik of B1 and b3

kj of B3 for the same ranges of indices. Algorithm 4 completely de-

scribes C1_A.

Figure 2 – Calculating vertical block B1(k) of cross over B1(k-1) – algorithm C1_A

Algorithm 3: Diagonal block calculation algorithm (D0_A)

Input: A block B1

Input: A size S of block

Output: A recalculated block B1

fork 0 toS - 1 do

fori 0 tok - 1 do

forj 0 tok - 1 do

s0b1
ij + b1

jkifb
1

ik>s0thenb1
iks0

s1b1
ki + b1

ijifb
1

kj>s1thenb1
kjs1

fori 0 tok - 1 do

forj 0 tok - 1 do

s2b1
ik + b1

kjifb
1

ij>s2thenb1
ijs2

returnB1

186

Calculating horizontal block of cross. The new algorithm C2_A calculates block

B1 over block B2 in stepwise manner while adding a vertex to a graph and adding a

row k to matrix B1. Fig. 3 illustrates the transition from matrix B1(k – 1) to matrix

B1(k) in a loop along k. First, element b1
kj of B1 is calculated over b2

ki of B2 and b1
ij of

B1 for i = 0…k – 1 and j = 0…S – 1. Second, element b1
ij of B1 is recalculated over

b2
ik of B2 and b1

kj of B1 for the same ranges of indices. Algorithm 5 completely de-

scribes C2_A.

The algorithms D0_A, C1_A and C2_A are further improved by means of resyn-

chronizing the loops along i and j, merging the loops, and introducing the sequential

reference locality for blocked data due to collecting column elements in one-

dimensional arrays. Algorithms D0_A, C1_A and C2_A have advantages against the

BCA algorithm. They reduce the number of loop iterations in nested loops and ex-

ploit the hierarchical caches efficiently.

Figure 3 – Calculating horizontal block B1(k) of cross over B1(k – 1) – algorithm C2_A

Results.The experiments were carried out on a multi-core processor Intel(R)

Core(TM) i5-6200UCPU @ 2.20 GHz. They aimed for identifying the dependence of

the run-time of the FW, BFW and HET algorithms and the algorithms for calculating

four types of blocks depending on the graph size, block size and number of blocks.

They make it possible to compare the new HET algorithm with the known homoge-

neous blocked BFW algorithm. We used complete graphs with random weights on the

edges, for which the problem of shortest paths is the hardest. Tab. 2 reports the run-

Algorithm 4: Calculating vertical block of cross (C1_A)

Input: Blocks B1 and B2

Input: A size S of block

Output: A recalculated block B1

fork 1 toS - 1 do

fori 0 toS - 1 do

forj 0 tok - 1 do

s0b1
ij + b3

jkifb
1

ik>s0thenb1
iks0

fori 0 toS - 1 do

forj 0 tok - 1 do

s2b1
ik + b3

kjifb
1

ij>s2thenb1
ijs2

returnB1

187

time of the uniform BCA algorithm that is used by BFW for all types of blocks on ma-

trix B[22] of various graph-sizes and various block-sizes. The run-time is close for

all blocks of D0, C1, C2 and P3 types.

When we apply the D0_A, C1_A, C2_A and P3_A algorithms to the same graphs

and blocks, their run-time is different (tab. 3). The fastest algorithm is D0_A, which

yields the speedup of 33.94 % on average over BCA (fig. 4). Algorithms C1_A and

C2_A shows the speedup of 24.59 % and 25.26 % respectively. The slowest P3_A al-

gorithm has shown the speedup of only 2.72 %. We can explain this fact as the graph

extension-based technique has failed to be applied to the blocks of type P3. Fig.e 5

gives a pair-wise comparison of the FW, BFW and HET algorithms on graphs of 2400

vertices depending on the block-size. Algorithm BFW is faster than FW by 5.06 % on

average. The gain of the Het algorithm is from 9.28 % to 25.64 % over FW and is

from 3.57 % to 23.40 % over BFW. Thus, the new D0_A, C1_A, C2_A and P3_A al-

gorithms of block calculation have significantly contributed to the acceleration of the

shortest paths search.

Table 2 – Run-time (ms) of uniform algorithm BCA on all block types of blocked

matrix B[22] vs. vertex count N and block size S
N S Mean Min Max Min % Max %

480 240 45.8 43.5 48.5 4.92 6.01

720 360 142.6 140.5 144.5 1.49 1.31

960 480 335.1 332.0 339.5 0.93 1.31

1200 600 657.1 653.5 661.0 0.55 0.59

1440 720 1123.0 1115.0 1130.5 0.71 0.67

1680 840 1804.8 1782.0 1829.0 1.26 1.34

1920 960 2705.9 2684.0 2721.5 0.81 0.58

2160 1080 3865.4 3851.5 3893.5 0.36 0.73

2400 1200 5287.9 5236.0 5334.0 0.98 0.87

Algorithm 5: Calculating horizontal block of cross (C2_A)

Input: Blocks B1 and B2

Input: A size S of block

Output: A recalculated block B1

fork 1 toS - 1 do

fori 0 tok - 1 do

forj 0 toS - 1 do

s0b2
ki + b1

ijifb
1

kj>s0thenb1
kjs0

fori 0 tok - 1 do

forj 0 toS - 1 do

s2b2
ik + b1

kjifb
1

ij>s2thenb1
ijs2

returnB1

188

Table 3 – Run-time (ms) of algorithms D0_A, C1_A, C2_A and P3_A on blocked

matrix B[22] vs. vertex count N and block size S
N S D0_A C1_A C2_A P3_A

480 240 29.0 33.0 32.5 43.0

720 360 96.0 115.0 108.5 141.0

960 480 227.0 253.0 251.0 330.0

1200 600 438.5 492.0 492.5 647.5

1440 720 751.0 846.0 848.5 1127.5

1680 840 1195.5 1345.0 1329.0 1764.5

1920 960 1838.0 2020.5 1993.0 2644.0

2160 1080 2527.5 2885.5 2837.5 3748.5

2400 1200 3472.5 3958.0 3898.5 5164.0

Figure 4 – Speedup % of algorithms D0_A, C1_A, C2_A and P3_A over BCA for B[2×2]

vs. block-size 240…1200 in graphs of 480…2400 vertices

Figure 5 – Speedup (%) of BFW over FW, HET over FW and HET over BFW

on graphs of 2400 vertices vs. block-size

-5,00

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

200 400 600 800 1000 1200

D0 C1 C2 P3

0,00

5,00

10,00

15,00

20,00

25,00

30,00

200 400 600 800 1000 1200

FW/Hom FW/Het Hom/Het

189

References

1. Madkour A., Aref W. G., Rehman F. U., Rahman M. A., Basalamah S. A Survey

of Shortest-Path Algorithms. ArXiv:1705.02044v1 [cs.DS] 4 May 2017, 26 p.

2. Anu P., Kumar M. G. Finding All-Pairs Shortest Path for a Large-Scale

Transportation Network Using Parallel Floyd-Warshall and Parallel Dijkstra Algo-

rithms. Journal of Computing in Civil Engineering, 2013, vol. 27, no. 3,

pp. 263–273.

3. PrihozhyA.,Bezati E., Ab RahmanA.-H.,Mattavelli M. Synthesis and Opti-

mization of Pipelines for HW Implementations of Dataflow Programs, IEEE Trans-

actions on CAD, 2015, vol. 34, no. 10, pp. 1613–1626.

4. Прихожий А. А. Распределенная и параллельная обработка данных. –

Минск: БНТУ, 2016. – 90 с.

5. Prihozhy A. A., Mattavelli M., Mlynek D. Data dependences critical path

evaluation at C/C++ system level description. International Workshop PAT-

MOS'2003, Springer, 2003, pp. 569–579.

6. Прихожий А. A., Ждановский А. М., Карасик О. Н., Маттавелли М. Эв-

ристический генетический алгоритм оптимизации вычислительных конвейе-

ров. Доклады БГУИР, 2017, № 1, с. 34–41.

7. Prihozhy A. ., Casale-Brunet S., Bezati E., Mattavelli M. Efficient Dynamic

Optimisation Heuristics for Dataflow Pipelines. 2018 IEEE International Workshop

on Signal Processing Systems (SiPS), 2018, pp. 1–6.

8. Prihozhy A. A., Casale-Brunet S., Bezati E., Mattavelli M. Pipeline Synthe-

sis and Optimization from Branched Feedback Dataflow Programs. Journal of Signal

Processing Systems [Electronic resource], 2020, vol. 92, pp. 1091–1099. – Mode of

access: https://doi.org/10.1007/s11265-020-01568-5. – Date of access: 20.09.2022.

9. Floyd R. W. Algorithm 97: Shortest Path. Communications of the ACM,

1962, vol. 5, no. 6, p. 345.

10. Venkataraman G.A., Sahni S., Mukhopadhyaya S. Blocked All-Pairs Short-

est Paths Algorithm, Journal of Experimental Algorithmics (JEA), 2003, vol. 8, pp.

857–874.

11. Park J., Penner M., Prasanna V. K. Optimizing graph algorithms for im-

proved cache performance. IEEE Transactions on Parallel and Distributed Systems,

2004, vol. 15, no. 9. pp. 769–782.

12. Albalwi E., Thulasiraman P., Thulasiram R. Task Level Parallelization of

All Pair Shortest Path Algorithm in OpenMP 3.0. Advances in Computer Science and

Engineering (CSE 2013), Los Angeles: Atlantis Press, 2013, pp. 109–112.

13. Tang P. Rapid development of parallel blocked all-pairs shortest paths code

for multi-core computers. IEEE SOUTHEASTCON 2014, Lexington, KY, USA,

IEEE, 2014, pp. 1–7.

14. Прихожий А. А., Карасик О. Н. Разнородный блочный алгоритм поиска

кратчайших путей между всеми парами вершин графа. Системный анализ и

прикладная информатика, 2017, № 3, c. 68–75.

15. Prihozhy A. A. Optimization of data allocation in hierarchical memory for

blocked shortest paths algorithms. System analysis and applied information science,

2021, no. 3, pp. 40–50.

190

16. Karasik O. N.,Prihozhy A. A. Threaded block-parallel algorithm for finding

the shortest pats on graph. Doklady BGUIR, 2018, No. 2, pp. 77–84.

17. Prihozhy A. A.,Karasik O. N. Cooperative block-parallel algorithms for task

execution on multi-core system. System analysis and applied information science,

2015, no. 2, pp. 10–18.

18. Prihozhy A. A. Simulation of direct mapped, k-way and fully associative

cacheonall pairs shortest paths algorithms. System analysis and applied information

science, 2019, no. 4, pp. 10–18.

19. Prihozhy А. A., Karasik, O. N. Inference of shortest path algorithms with

spatial and temporal locality for Big Data processing.Big Data and Advanced Analyt-

ics: Proceedings of VIII InternationalConference.Minsk: Bestprint, 2022, pp. 56–66.

