
176

UDC 004.4

REDUCTIONOFPROCESSOR TIME AND ENERGY CONSUMPTION

BY PROFILING ALGORITHMS OF FINDING SHORTEST PATHS

IN A GRAPH

1Prihozhy А. А., 2Subbota Y. М.
1Belarusian National Technical University,

Minsk, Belarus, prihozhy@yahoo.com,
2Belarusian National Technical University,

Minsk, Belarus, subbota@mail.com

The paper solves the problem of improving parameters of software implementa-

tions on multicore systems and uses the problem of finding shortest (critical) paths

between all pairs of vertices of a weighted graph [1–6] as a benchmark. For this pur-

pose, we selected a set of competing algorithms of shortest paths search, and our ob-

jective was to choose the best algorithm with respect to time and power parameters

by means of profiling programs during their execution on a multicore system. Among

the competing algorithms we considered: the classical Floyd-Warshall algorithm

[7, 8]; the blocked Floyd-Warshall algorithm [9–16]; the algorithm based on stepwise

addition of vertices to the graph [17]. Likwid [18, 19] was chosen as a tool for profil-

ing and measuring program parameters.

Algorithm 1 is the classical Floyd-Warshall (FW) algorithm proposed in [7] and

built on the matrix D of shortest paths distances by means of three nested loops that

perform the same kind of calculations on all elements of the matrix. In the body of

the most nested loop, the length sum of path between vertices i and j of the graph

which passes through vertex k, which can update element di,j of the matrix, is calcu-

lated. Fig. 1 illustrates the FW operation.

Figure 1 – Illustration of classic Floyd-Warshall

algorithm operation

Algorithm 2 is the blocked Floyd-Warshall algorithm (BFW) proposed in [9, 10]

and constructed by decomposing matrix D into matrix B of blocks. Algorithm

BCA(Bi,j,Bi,m, Bm,j) recalculates block Bi,j through blocks Bi,m and Bm,j. Fig. 2 illustrates

Algorithm 1: Floyd-Warshall (FW)

Input: A matrix W of graph edge weights

Input: A size N of matrix

Output: A matrix D of path distances

D W

fork 1 toNdo

fori 1 toNdo

forj 1 toNdo

sumdi,k + dk,j

ifdi,j>sumthendi,jsum

returnD

177

the operation of the BFW. Using BCA, BFW computes the diagonal block D0, then

the blocks C1 and C2 of the cross, and finally the peripheral blocks P3. At each itera-

tion, the cross shifts from the upper left to the lower right corner. Partitioning of the

D matrix into blocks creates spatial locality of references to the elements of the

blocks, which increases the efficiency of the hierarchical cache memory operation.

Algorithm 3 [13, 17] is based on stepwise addition of vertices to the graph

(GEA). At each iteration it adds row k and column k to matrix D, calculates the

lengths of shortest paths entering and leaving from vertex k, and recalculates path

lengths between pairs of vertices from set {1, ..., k– 1}. Fig. 3 illustrates the GEA op-

eration. The main advantage of GEA is the increased temporal locality of data pro-

cessing since the algorithm works with submatrices of monotonically increasing size

in the range from 1 × 1 to N × N.

Figure 2 – Illustration of blocked

Floyd-Warshall algorithm operation

LIKWID [14] is part of the OpenHPC (High Performance Computing) suite, a

reference collection of open-source HPC software components and best practices.

Moreover, LIKWID and its team is part of a virtual institute of about 15 academic

and industry partners to develop state-of-the-art tools for high-performance compu-

ting. There are also maintained packages for ArchLinux and Gentoo. Spack, a pack-

age manager for supercomputers, contains LIKWID as a mainline package.

The Likwid software tool allows evaluating the characteristics of software im-

plementations of algorithms, comparing them and giving recommendations on the

choice of the preferable algorithm according to a selected criterion. The command

utility likwid-perfctr [14] is designed for profiling program code with low overhead

and without interfering with the process and results of code execution. Figure 4

shows the relationship between counters, processor events, and Likwid characteris-

tics. Markers are used to highlight the profiled areas of the program code [24]. Nest-

ing or partial overlapping of marked areas is not allowed. At first Likwid is integrated

into software implementations of algorithms, then computational experiments are

Algorithm 2: Blocked Floyd–Warshall (BFW)

Input: A number N of graph vertices

Input: A matrix W of graph edge weights

Input: A size S of block

Output: A blocked matrix B of path distances

M N / S B[MM] W[NN]

form 1 toMdo

BCA (Bm,m, Bm,m, Bm,m) // D0

fori 1 toMdo

ifimthen

BCA (Bi,m, Bi,m, Bm,m) // C1

BCA (Bm,i, Bm,m, Bm,i) // C2

fori 1 toMdo

if i m then

forj 1 toMdo

if j m then

BCA (Bi,j, Bi,m, Bm,j) // P3

returnB

178

performed on a multicore system, after that the results of parameter measurements are

systematized and conclusions are made about algorithm preferences.

Figure 3 – Illustration of graph

extension-based algorithm operation

Figure 4 – Counters, events and characteristics of likwid-perfctr

Many of Intel processors, including the one we use, contain a RAPL interface

that provides an MSR to estimate power consumption for the four power planes of

the machine (fig. 5). The power consumption is measured for the CPU cores, GPU,

and DRAM separately.

Algorithm 3:GEA after improving spatial locality

Input: A matrix W of graph edge weights

Input: A size N of matrix

Output: A matrix D of shortest path distances

D Wc11 ∞w1d1,2

fork 2 toNdo

k1 k – 1 rgetRow(D, k) r1

getRow(D, k1)

fori 1 tok1 do

min∞ rigetRow(D, i)

forj 1 tok1 do

s2c1i + r1jifrij>s2thenrijs2

s0rij + wjifmin>s0thenmins0

s1ri + rijifdk,j>s1thendk,js1

cimin

fori 1 tok1 do

c1idi,k ciwidi,k+1

ifk <Nthen wkdk,k+1

k1 Nr1 GetRow(D, k1)

fori 1 tok1 – 1 do

rigetRow(D, i)

forj 1 tok1 – 1 do

s2c1i + r1jifrij>s2thenrijs2

returnD

179

Figure 5 – Architecture of four power planes

Computational experiments that allowed us to evaluate the execution time and

energy consumption of the FW, BFW, and GEA algorithms were performed on a

computer with an Intel i5-8265U processor. It is an energy efficient processor with 4

cores and 8 hardware threads, built on the Intel Whiskey Lake-U architecture with a

power consumption of 15 W and a base clock frequency of 1.60 GHz. The processor

has an integrated Intel UHD Graphics 620 graphics card, and the memory controller

supports DDR4-2400 and LPDDR3-2133 standards. The computer has 8GB of RAM.

The Intel Smart Cache has a capacity of 6 MB. The computer is equipped with a

256 GB SSD drive. The processor cache has three levels: L1, L2 and L3. Each core is

equipped with L1 and L2 level caches of 32 Kb and 256 Kb respectively. The L3 lev-

el is 6 MB in size and is shared by all cores. The L3 level has the largest capacity but

is the slowest, 30 cycles on average. The computer has a Unix-like operating system

(Ubuntu 20.04.3 LTS distribution) based on the Linux kernel, the code of which is

written in C with some assembly language extensions.

Experiments to measure time and energy consumption were performed on

randomly generated complete weighted directed cyclic graphs of various sizes.

In the paper, the results of profiling on graphs consisting of 1200 and 2400 vertices

are given.

Fig. 6 shows the run-time in sec of the FW, BFW, and GEA algorithms on

graphs of 1200 and 2400 vertices for different block sizes of matrix B. The parame-

ters of FW and GEA do not depend on the block size, therefore, fig. 6 shows varia-

tions in their run-time. In terms of execution time, GEA is significantly superior to

FW and BFW.

Fig. 7 shows the energy (J) consumed by the DRAM memory when executing

the FW, BFW, and GEA algorithms. The GEA algorithm significantly outperforms the

FW and to a lesser extent, outperforms the BFW in terms of DRAM energy consump-

tion.

Fig. 8 shows that the processor cores consume significantly more energy (J)

when executing the FW algorithm in contrast to executing the GEA algorithm.

The GEA algorithm also outperforms the BFW in this respect.

Tab.1 gives a comparison of the three algorithms on three parameters, expressed

in %. GEA has the largest advantage over FW in in terms of memory energy. GEA

has the largest advantage over BFW in terms of cores energy and execution time.

180

a)

b)

Figure 6 – Run-time (sec) of algorithms FW, BFW and GEA on graphs of

a) 1200 and b) 2400 vertices

a)

b)

Figure 7 – Energy (J) consumed by DRAM algorithms FW, BFW and GEA on graphs of

a) 1200 and b) 2400 vertices

a)

b)

Figure 8 – Energy (J) consumed by processor cores for FW, BFW, and GEA algorithms on graphs

consisting of a) 1200 and b) 2400 vertices

0

100

200

300

400

500

600

200 400 600 800 1000 1200

FW BFW GEA

0

10

20

30

40

50

200 400 600 800 1000 1200

FW BFW GEA

0

0,5

1

1,5

2

2,5

3

100 200 300 400 500 600

FW BFW GEA

0

5

10

15

20

25

30

200 400 600 800 1000 1200

FW BFW GEA

0

10

20

30

40

50

60

70

100 200 300 400 500 600

FW BFW GEA

0

100

200

300

400

500

600

200 400 600 800 1000 1200

FW BFW GEA

181

Table 1 – Average reduction (%) in time and energy resources by the GEA algorithm

compared to the FW and BFW algorithms on two graph sizes

Algorithms

Graphs on 1200 vertices Graphs on 2400 vertices

Time, %
Energy of

memory, %

Energy of

cores, %
Time, %

Energy of

memory, %

Energy of

cores, %

GEA / FW 130.8 158.7 134.6 128.2 147.9 132.6

GEA / BFW 57.1 41.4 59.3 52.6 16.5 56.3

Conclusion. Profiling of program code executed on a multi-core system is an ef-

fective means of measuring and estimating parameters of competing algorithms and

detecting areas of their preferable use. It can let us reduce the consumption of compu-

tational and energy resources significantly when solving typical tasks such as search-

ing for the shortest paths between all pairs of vertices in a graph. In particular, the re-

search results obtained in this paper show that the recently proposed algorithm based

on sequential addition of vertices to the graph has convincing time and energy ad-

vantages over the well-known classical Floyd-Warshall algorithm and its blocked

version, focused on increasing cache efficiency and organization of parallel computa-

tions on multicore systems.

References

1. Anu P., Kumar M. G. Finding All-Pairs Shortest Path for a Large-Scale

Transportation Network Using Parallel Floyd-Warshall and Parallel Dijkstra Algo-

rithms. Journal of Computing in Civil Engineering, 2013, vol. 27, no. 3,

pp. 263–273.

2. Prihozhy A.A., Mattavelli M., Mlynek D. Data dependences critical path

evaluation at C/C++ system level description. International Workshop PAT-

MOS'2003, Springer,2003, pp. 569–579.

3. Prihozhy A.A., Casale-Brunet S., Bezati E., Mattavelli M. Efficient Dynam-

ic Optimisation Heuristics for Dataflow Pipelines. 2018 IEEE International Work-

shop on Signal Processing Systems (SiPS), 2018, pp. 1–6.

4. Prihozhy A.A., Casale-Brunet S., Bezati E., Mattavelli M. Pipeline Synthe-

sis and Optimization from Branched Feedback Dataflow Programs. Journal of Signal

Processing Systems, 2020, vol. 92, pp. 1091–1099.

5. Прихожий А. A., Ждановский А. М., Карасик О. Н., Маттавелли М.

Эвристический генетический алгоритм оптимизации вычислительных конвей-

еров. Доклады БГУИР, 2017, № 1, с. 34–41.

6. Prihozhy A. A. Simulation of direct mapped, k-way and fully associative

cacheonall pairs shortest paths algorithms. System analysis and applied information

science, 2019, no. 4, pp. 10–18.

7. Floyd R. W. Algorithm 97: Shortest Path. Communications of the ACM,

1962, vol. 5, no. 6., p. 345.

8. Madkour A, Aref W.G., Rehman F. U., Rahman M.A., Basalamah S. A Sur-

vey of Shortest-Path Algorithms. ArXiv:1705.02044v1 [cs.DS] 4 May 2017, 26 p.

182

9. Venkataraman G. A., Sahni S., Mukhopadhyaya S. Blocked All-Pairs Short-

est Paths Algorithm, Journal of Experimental Algorithmics (JEA), 2003, vol. 8, pp.

857–874.

10. Park J., Penner M., Prasanna V. K. Optimizing graph algorithms for im-

proved cache performance. IEEE Transactions on Parallel and Distributed Systems,

2004, vol. 15, no. 9. pp. 769–782.

11. Albalwi E., Thulasiraman P., Thulasiram R. Task Level Parallelization of

All Pair Shortest Path Algorithm in OpenMP 3.0. Advances in Computer Science and

Engineering (CSE 2013), Los Angeles: Atlantis Press, 2013, pp. 109–112.

12. Tang, P. Rapid development of parallel blocked all-pairs shortest paths code

for multi-core computers. IEEE SOUTHEASTCON 2014, Lexington, KY, USA,

IEEE, 2014, pp. 1–7.

13. Прихожий А. А., Карасик О. Н. Разнородный блочный алгоритм поиска

кратчайших путей между всеми парами вершин графа. Системный анализ и

прикладная информатика, 2017, № 3, c. 68–75.

14. Prihozhy A.A. Optimization of data allocation in hierarchical memory for

blocked shortest paths algorithms. System analysis and applied information sci-

ence,2021, No. 3, pp. 40–50.

15. Karasik O. N.,PrihozhyA. A. Threaded block-parallel algorithm for finding

the shortest pats on graph. Doklady BGUIR, 2018, No. 2, pp. 77–84.

16. Prihozhy A. A.,Karasik O. N. Cooperative block-parallel algorithms for task

execution on multi-core system. System analysis and applied information science,

2015, No. 2, pp. 10–18.

17. Prihozhy А. A., Karasik O. N. Inference of shortest path algorithms with

spatial and temporal locality for Big Data processing.Big Data and Advanced Analyt-

ics: Proceedings of VIII InternationalConference.Minsk: Bestprint, 2022, pp. 56–66.

18. Treibig J., Hager G., Wellein G. LIKWID: A Lightweight Performance-

Oriented Tool Suite for x86 Multicore Environments. 39th International Conference

on Parallel Processing Workshops, 2010, pp. 1–10.

