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The paper solves the problem of improving parameters of software implementa-

tions on multicore systems and uses the problem of finding shortest (critical) paths 

between all pairs of vertices of a weighted graph [1–6] as a benchmark. For this pur-

pose, we selected a set of competing algorithms of shortest paths search, and our ob-

jective was to choose the best algorithm with respect to time and power parameters 

by means of profiling programs during their execution on a multicore system. Among 

the competing algorithms we considered: the classical Floyd-Warshall algorithm 

[7, 8]; the blocked Floyd-Warshall algorithm [9–16]; the algorithm based on stepwise 

addition of vertices to the graph [17]. Likwid [18, 19] was chosen as a tool for profil-

ing and measuring program parameters. 

Algorithm 1 is the classical Floyd-Warshall (FW) algorithm proposed in [7] and 

built on the matrix D of shortest paths distances by means of three nested loops that 

perform the same kind of calculations on all elements of the matrix. In the body of 

the most nested loop, the length sum of path between vertices i and j of the graph 

which passes through vertex k, which can update element di,j of the matrix, is calcu-

lated. Fig. 1 illustrates the FW operation. 

 

 

 

 

Figure 1 – Illustration of classic Floyd-Warshall 

algorithm operation 

 

 

Algorithm 2 is the blocked Floyd-Warshall algorithm (BFW) proposed in [9, 10] 

and constructed by decomposing matrix D into matrix B of blocks. Algorithm 

BCA(Bi,j,Bi,m, Bm,j) recalculates block Bi,j through blocks Bi,m and Bm,j. Fig. 2 illustrates 

 
Algorithm 1: Floyd-Warshall (FW) 

 
Input: A matrix W of graph edge weights 

Input: A size N of matrix 

Output: A matrix D of path distances 

D  W 

fork  1 toNdo 

fori  1 toNdo 

forj  1 toNdo 

sumdi,k + dk,j 

ifdi,j>sumthendi,jsum 

returnD 
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the operation of the BFW. Using BCA, BFW computes the diagonal block D0, then 

the blocks C1 and C2 of the cross, and finally the peripheral blocks P3. At each itera-

tion, the cross shifts from the upper left to the lower right corner. Partitioning of the 

D matrix into blocks creates spatial locality of references to the elements of the 

blocks, which increases the efficiency of the hierarchical cache memory operation.  

Algorithm 3 [13, 17] is based on stepwise addition of vertices to the graph 

(GEA). At each iteration it adds row k and column k to matrix D, calculates the 

lengths of shortest paths entering and leaving from vertex k, and recalculates path 

lengths between pairs of vertices from set {1, ..., k– 1}. Fig. 3 illustrates the GEA op-

eration. The main advantage of GEA is the increased temporal locality of data pro-

cessing since the algorithm works with submatrices of monotonically increasing size 

in the range from 1 × 1 to N × N.  

 

 

Figure 2 – Illustration of blocked 

Floyd-Warshall algorithm operation 

 

 

LIKWID [14] is part of the OpenHPC (High Performance Computing) suite, a 

reference collection of open-source HPC software components and best practices. 

Moreover, LIKWID and its team is part of a virtual institute of about 15 academic 

and industry partners to develop state-of-the-art tools for high-performance compu-

ting. There are also maintained packages for ArchLinux and Gentoo. Spack, a pack-

age manager for supercomputers, contains LIKWID as a mainline package. 

The Likwid software tool allows evaluating the characteristics of software im-

plementations of algorithms, comparing them and giving recommendations on the 

choice of the preferable algorithm according to a selected criterion. The command 

utility likwid-perfctr [14] is designed for profiling program code with low overhead 

and without interfering with the process and results of code execution. Figure 4 

shows the relationship between counters, processor events, and Likwid characteris-

tics. Markers are used to highlight the profiled areas of the program code [24]. Nest-

ing or partial overlapping of marked areas is not allowed. At first Likwid is integrated 

into software implementations of algorithms, then computational experiments are 

 
Algorithm 2: Blocked Floyd–Warshall (BFW) 

 
Input: A number N of graph vertices 

Input: A matrix W of graph edge weights 

Input: A size S of block 

Output: A blocked matrix B of path distances  

M  N / S     B[MM] W[NN] 

form  1 toMdo 

BCA (Bm,m, Bm,m, Bm,m)                         // D0 

fori  1 toMdo 

ifimthen 

BCA (Bi,m, Bi,m, Bm,m)                // C1 

BCA (Bm,i, Bm,m, Bm,i)                // C2 

fori  1 toMdo 

if i  m then 

forj  1 toMdo 

if j  m then 

BCA (Bi,j, Bi,m, Bm,j)       // P3 

returnB 
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performed on a multicore system, after that the results of parameter measurements are 

systematized and conclusions are made about algorithm preferences. 

 

 

 

Figure 3 – Illustration of graph  

extension-based algorithm operation 

 

 
Figure 4 – Counters, events and characteristics of likwid-perfctr 

 

Many of Intel processors, including the one we use, contain a RAPL interface 

that provides an MSR to estimate power consumption for the four power planes of 

the machine (fig. 5). The power consumption is measured for the CPU cores, GPU, 

and DRAM separately. 

 



 
Algorithm 3:GEA after improving spatial locality 



 
Input: A matrix W of graph edge weights 

Input: A size N of matrix 

Output: A matrix D of shortest path distances 

D  Wc11 ∞w1d1,2 

fork  2 toNdo 

k1  k – 1     rgetRow(D, k)     r1 

getRow(D, k1) 

fori  1 tok1 do 

min∞     rigetRow(D, i) 

forj  1 tok1 do 

s2c1i + r1jifrij>s2thenrijs2 

s0rij + wjifmin>s0thenmins0  

s1ri + rijifdk,j>s1thendk,js1 

cimin 

fori  1 tok1 do 

c1idi,k ciwidi,k+1 

ifk <Nthen wkdk,k+1 

k1 Nr1 GetRow(D, k1) 

fori  1 tok1 – 1 do 

rigetRow(D, i) 

forj  1 tok1 – 1 do 

s2c1i + r1jifrij>s2thenrijs2 

returnD 
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Figure 5 – Architecture of four power planes 

 

Computational experiments that allowed us to evaluate the execution time and 

energy consumption of the FW, BFW, and GEA algorithms were performed on a 

computer with an Intel i5-8265U processor. It is an energy efficient processor with 4 

cores and 8 hardware threads, built on the Intel Whiskey Lake-U architecture with a 

power consumption of 15 W and a base clock frequency of 1.60 GHz. The processor 

has an integrated Intel UHD Graphics 620 graphics card, and the memory controller 

supports DDR4-2400 and LPDDR3-2133 standards. The computer has 8GB of RAM. 

The Intel Smart Cache has a capacity of 6 MB. The computer is equipped with a 

256 GB SSD drive. The processor cache has three levels: L1, L2 and L3. Each core is 

equipped with L1 and L2 level caches of 32 Kb and 256 Kb respectively. The L3 lev-

el is 6 MB in size and is shared by all cores. The L3 level has the largest capacity but 

is the slowest, 30 cycles on average. The computer has a Unix-like operating system 

(Ubuntu 20.04.3 LTS distribution) based on the Linux kernel, the code of which is 

written in C with some assembly language extensions. 

Experiments to measure time and energy consumption were performed on 

randomly generated complete weighted directed cyclic graphs of various sizes. 

In the paper, the results of profiling on graphs consisting of 1200 and 2400 vertices 

are given. 

Fig. 6 shows the run-time in sec of the FW, BFW, and GEA algorithms on 

graphs of 1200 and 2400 vertices for different block sizes of matrix B. The parame-

ters of FW and GEA do not depend on the block size, therefore, fig. 6 shows varia-

tions in their run-time. In terms of execution time, GEA is significantly superior to 

FW and BFW. 

Fig. 7 shows the energy (J) consumed by the DRAM memory when executing 

the FW, BFW, and GEA algorithms. The GEA algorithm significantly outperforms the 

FW and to a lesser extent, outperforms the BFW in terms of DRAM energy consump-

tion. 

Fig. 8 shows that the processor cores consume significantly more energy (J) 

when executing the FW algorithm in contrast to executing the GEA algorithm. 

The GEA algorithm also outperforms the BFW in this respect. 

Tab.1 gives a comparison of the three algorithms on three parameters, expressed 

in %. GEA has the largest advantage over FW in in terms of memory energy. GEA 

has the largest advantage over BFW in terms of cores energy and execution time. 
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a) 

 

b) 

Figure 6 – Run-time (sec) of algorithms FW, BFW and GEA on graphs of  

a) 1200 and b) 2400 vertices 

 

 

a) 

 

b) 

Figure 7 – Energy (J) consumed by DRAM algorithms FW, BFW and GEA on graphs of  

a) 1200 and b) 2400 vertices 

 

 

 

a) 

 

b) 

Figure 8 – Energy (J) consumed by processor cores for FW, BFW, and GEA algorithms on graphs 

consisting of a) 1200 and b) 2400 vertices 
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Table 1 – Average reduction (%) in time and energy resources by the GEA algorithm 

compared to the FW and BFW algorithms on two graph sizes 

Algorithms 

Graphs on 1200 vertices Graphs on 2400 vertices 

Time, % 
Energy of 

memory, % 

Energy of 

cores, % 
Time, % 

Energy of 

memory, % 

Energy of 

cores, % 

GEA / FW 130.8 158.7 134.6 128.2 147.9 132.6 

GEA / BFW 57.1 41.4 59.3 52.6 16.5 56.3 

 

Conclusion. Profiling of program code executed on a multi-core system is an ef-

fective means of measuring and estimating parameters of competing algorithms and 

detecting areas of their preferable use. It can let us reduce the consumption of compu-

tational and energy resources significantly when solving typical tasks such as search-

ing for the shortest paths between all pairs of vertices in a graph. In particular, the re-

search results obtained in this paper show that the recently proposed algorithm based 

on sequential addition of vertices to the graph has convincing time and energy ad-

vantages over the well-known classical Floyd-Warshall algorithm and its blocked 

version, focused on increasing cache efficiency and organization of parallel computa-

tions on multicore systems. 

 

References 

1. Anu P., Kumar M. G. Finding All-Pairs Shortest Path for a Large-Scale 

Transportation Network Using Parallel Floyd-Warshall and Parallel Dijkstra Algo-

rithms. Journal of Computing in Civil Engineering, 2013, vol.  27, no. 3, 

pp. 263–273. 

2. Prihozhy A.A., Mattavelli M., Mlynek D. Data dependences critical path 

evaluation at C/C++ system level description. International Workshop PAT-

MOS'2003, Springer,2003, pp. 569–579. 

3. Prihozhy A.A., Casale-Brunet S., Bezati E., Mattavelli M. Efficient Dynam-

ic Optimisation Heuristics for Dataflow Pipelines. 2018 IEEE International Work-

shop on Signal Processing Systems (SiPS), 2018, pp. 1–6. 

4. Prihozhy A.A., Casale-Brunet S., Bezati E., Mattavelli M. Pipeline Synthe-

sis and Optimization from Branched Feedback Dataflow Programs. Journal of Signal 

Processing Systems, 2020, vol. 92, pp. 1091–1099. 

5. Прихожий А. A., Ждановский А. М., Карасик О. Н., Маттавелли М. 

Эвристический генетический алгоритм оптимизации вычислительных конвей-

еров. Доклады БГУИР, 2017, № 1, с. 34–41. 

6. Prihozhy A. A. Simulation of direct mapped, k-way and fully associative 

cacheonall pairs shortest paths algorithms. System analysis and applied information 

science, 2019, no. 4, pp. 10–18. 

7. Floyd R. W. Algorithm 97: Shortest Path. Communications of the ACM, 

1962, vol. 5, no. 6., p. 345. 

8. Madkour A, Aref W.G., Rehman F. U., Rahman M.A., Basalamah S. A Sur-

vey of Shortest-Path Algorithms. ArXiv:1705.02044v1 [cs.DS] 4 May 2017, 26 p. 



182 
 

9. Venkataraman G. A., Sahni S., Mukhopadhyaya S. Blocked All-Pairs Short-

est Paths Algorithm, Journal of Experimental Algorithmics (JEA), 2003, vol. 8, pp. 

857–874. 

10. Park J., Penner M., Prasanna V. K. Optimizing graph algorithms for im-

proved cache performance. IEEE Transactions on Parallel and Distributed Systems, 

2004, vol. 15, no. 9. pp. 769–782. 

11. Albalwi E., Thulasiraman P., Thulasiram R. Task Level Parallelization of 

All Pair Shortest Path Algorithm in OpenMP 3.0. Advances in Computer Science and 

Engineering (CSE 2013), Los Angeles: Atlantis Press, 2013, pp. 109–112. 

12. Tang, P. Rapid development of parallel blocked all-pairs shortest paths code 

for multi-core computers. IEEE SOUTHEASTCON 2014, Lexington, KY, USA, 

IEEE, 2014, pp. 1–7. 

13. Прихожий А. А., Карасик О. Н. Разнородный блочный алгоритм поиска 

кратчайших путей между всеми парами вершин графа. Системный анализ и 

прикладная информатика, 2017, № 3, c. 68–75. 

14. Prihozhy A.A. Optimization of data allocation in hierarchical memory for 

blocked shortest paths algorithms. System analysis and applied information sci-

ence,2021, No. 3, pp. 40–50. 

15. Karasik O. N.,PrihozhyA. A. Threaded block-parallel algorithm for finding 

the shortest pats on graph. Doklady BGUIR, 2018, No. 2, pp. 77–84. 

16. Prihozhy A. A.,Karasik O. N. Cooperative block-parallel algorithms for task 

execution on multi-core system. System analysis and applied information science, 

2015, No. 2, pp. 10–18. 

17. Prihozhy А. A., Karasik O. N. Inference of shortest path algorithms with 

spatial and temporal locality for Big Data processing.Big Data and Advanced Analyt-

ics: Proceedings of VIII InternationalConference.Minsk: Bestprint, 2022, pp. 56–66. 

18. Treibig J., Hager G., Wellein G. LIKWID: A Lightweight Performance-

Oriented Tool Suite for x86 Multicore Environments. 39th International Conference 

on Parallel Processing Workshops, 2010, pp. 1–10. 

  


