ОЦЕНКА ТРИБОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК ПОКРЫТИЙ, ПОЛУЧЕННЫХ МЕТОДОМ ПЛАЗМЕННОЙ МЕТАЛЛИЗАЦИИ

Зеленогурский университет Зелена Гура, Польша

Покрытия на основе различных металлических материалов, наносимые различными способами, широко используются при восстановлении изношенных деталей машин, имея различные физические и эксплуатационные характеристики. Одним из современных методов нанесения покрытий является плазменная металлизация.

Методы плазменной металлизации используются для:

восстановления первичных размеров и формы изношенных поверхностей деталей машин;

ликвидации литейных дефектов;

формирования поверхностей подшипников скольжения;

формирования поверхностей повышенной износостойкости;

формирования антикоррозионных покрытий и др.

С целью выявления новых материалов, используемых для нанесения покрытий, рассматривались трибологические характеристики ряда покрытий, нанесенных на поверхность образцов (колодок) из стали 45: карбид вольфрама WC, никель, композитная керамика, хромоникелевый сплав (52% Cr, 28% Ni, 12% Co), карбид хрома Cr_3C_2 с добавками хрома и никеля (соответственно 20 и 5%). Покрытия наносились с помощью плазменного пистолета МІМ40. Полученные поверхности шлифовались для обеспечения шероховатости Ra = 0,45...0,52 мкм. В качестве контртел использовались ролики диаметром 35 мм из стали 45 твердостью 27 HRC и шероховатостью рабочей поверхности после токарной обработки Ra = 1,5...1,8 мкм.

Исследования выполнялись на машине трения T-05 с парой трения ролик – колодка (рис. 1). Эта машина используется для оценки трибологических характеристик масел и консистентных смазок, а также условий изнашивания поверхностей образцов из металлов и пластмасс. Смазочный материал – машинное масло AN-68, условия смазывания – погружением.

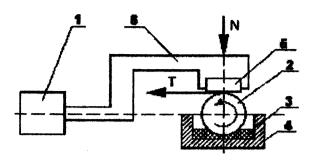


Рис. 1. Схема работы машины трения Т-05: I — тензометрический датчик для измерения сил трения, 2 — ролик; 3 — масло AN-68; 4 — ванночка; 5 — колодка с нанесенным покрытием; 6 — рычаг

Испытания проводились в два этапа: 1) приработка при переменных нагрузках. Каждые 30 с выполнялось переключение частот вращения ролика в направлении $60 \rightarrow 120 \rightarrow 180 \rightarrow 240$ об/мин при нагрузке сначала 300 H, далее такой же цикл при нагрузках 600, 900 и 1200 H); 2) изнашивание при постоянной нагрузке 900 H и частоте вращения 180 об/мин в течение 1 ч.

Результаты исследований трибологических характеристик покрытий приведены на рис. 2-4. Наилучшими свойствами характеризуется покрытий на основе карбидов вольфрама: наименьший коэффициент трения ($\sim 0,17$), наименьший относительный объемный износ ($0,0065~\text{mm}^3/\text{ч}$). Несколько хуже свойства покрытия на основе карбидов хрома (коэффициент трения $\sim 0,185$), наименьший относительный объемный износ ($0,0119~\text{mm}^3/\text{ч}$). Далее следуют покрытия на основе никеля и хромоникелевого сплава: средние коэффициенты трения равны соответственно 0,2~u 0,19, а относительные объемные износы 0,0205~u 0,246 mm $^3/\text{ч}$. Наихудшие показатели имеет керамическое покрытие. Хотя средний коэффициент трения в этом случае близок к зафиксированным для прочих покрытий (0,193), интенсивность изнашивания резко возрастает ($\sim 0.3526~\text{mm}^3/\text{ч}$).

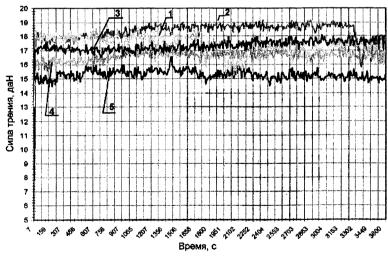


Рис. 2. Изменения силы трения во времени (здесь и далее 1 – карбид вольфрама, 2 – никель, 3 – керамика, 4 – хромоникелевый сплав, 5 – карбид хрома)

Таким образом, плазменная металлизация позволяет формировать поверхности, складывающиеся с нескольких разнородных составляющих. Количественно небольшие добавки на основе металлов о высоких эксплуатационных свойствах (хром, никель, молибден и др.) позволяет сформировать покрытие со свойствами близкими или высшими по сравнению со свойствами чистого металла.

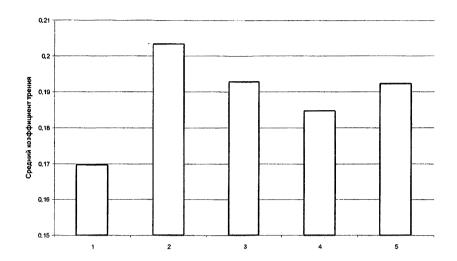


Рис. 3. Сопоставления средних коэффициентов трения на поверхности покрытий

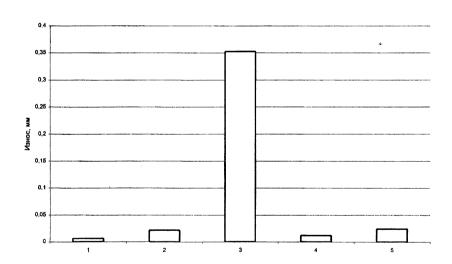


Рис. 4. Сопоставления износов поверхности покрытий

ЛИТЕРАТУРА

1. Brenek J., Brodzki Z., Drążkiewicz T., Gębalski S., Kowalski Z. Poradnik metalizacji natryskowej. Warszawa: Państwowe Wydawnictwo Techniczne, 1959. 2. Mały leksykon techniczny. Technologia mechaniczna/ red. Topulos A. Warszawa: WNT, 1987.