

Рисунок 2 - Электрофильтр «ЭФА»

Важнейшим направлением решения этой задачи является снижение адгезии пыли как на поверхности осадительных, так и коронирующих электродов.

ЛИТЕРАТУРА

1. Попков, В.И., Левитов, В.И., Ларионов, В.П., Верещагин, И.П., Пашин, М.М. Состояние и перспективы научных исследований в области промышленного применения сильных электрических полей // Электричество. – 1977. – №9 – с. 1-8. 2. Алиев, Г.М.А., Гоник, А.Е. Электрооборудование и режимы питания электрофильтров. – М.: «Энергия», 1971. – 352 с. 3 Внутренние санитарно – технические устройства. // Справочник проектировщика под ред И.Г. Староверова. – Часть II. – 2-е изд., доп. и перераб. – М.: Стройиздат, 1977. – 502 с. 4 Ужов, В.Н. Очистка промышленных газов электрофильтрами. – 2-е изд., перераб. и доп. – М.: Химия, 1967. – 344 с. 5. Отчет о НИР «Разработка конструкции и организация производства электрофильтров для улавливания промышленных пылей». – Новополоцк. ПГУ. 2003 г. – с.

УДК 62-82.001

Горошко В.Ф.

МОДЕЛИРОВАНИЕ СТАНОЧНОГО ГИДРОПРИВОДА С ДРОССЕЛЬНЫМ РЕГУЛИРОВАНИЕМ СКОРОСТИ

Белорусский национальный технический университет Минск, Беларусь

В гидроприводах с дроссельным регулированием регулирование скорости выходного звена производится посредством изменения сопротивления участка трубопровода, по которому рабочая жидкость поступает в гидродвигатель (регулирование на входе) или идет на слив из гидродвигателя (регулирование на выходе). При обоих способах регулирования давление и расход насоса постоянны, постоянна также и потребляемая насосом мощность. Часть подаваемого насосом расхода постоянно сливается в бак через клапан, не выполняя никакой полезной работы. По этой причине к.п.д. гидроприводов низок и их применение оправдано только при малых мощностях гидродвигателя.

200

При разработке математических моделей гидроприводов нами приняты следующие упрощающие допущения:

- непрерывность функций, описывающих расходные и силовые характеристики элементов;
- отсутствие волновых процессов в рабочей жидкости, относительно небольшая протяженность магистралей;
- упругие, инерционные и демпфирующие свойства рабочей жидкости и элементов, представленные сосредоточенными параметрами;
- линейная зависимость от давлений внешних и внутренних утечек в гидросистеме;
- постоянные коэффициенты расходов гидравлических сопротивлений;
- кромки щелей клапанов и золотников прямые и острые, а диаметральные зазоры малы;
- отсутствие гидродинамических сил реакции струи в золотниках;
- постоянный угол истечения струи в клапане;
- частота вращения ротора насосов постоянна.

Рисунок 1.- Принципиальные схемы гидроприводов с дроссельным регулированием

На рисунке 1 приведены наиболее распространенные схемы гидроприводов с дроссельзым регулированием, где цифрами 1 и 2 отмечены магистрали. Принимая в качестве искомых величины давления p_1 и p_2 в магистралях 1 и 2, перемещение (координата) X рабочего эргана и ширину щели Z клапана, состояние всех гидроприводов может быть описано с учетом принятых выше допущений системой нелинейных дифференциальных уравнений:

$$\begin{aligned}
\dot{p}_{1} &= \frac{E}{V_{1} - \alpha_{1} \cdot F_{1} \cdot x} (Q_{1} - Q_{3} - Q_{5} + \alpha_{1} \cdot F_{1} \cdot \dot{x} - \alpha_{3} \cdot F_{3} \cdot \dot{z} - q_{1}); \\
\dot{p}_{2} &= \frac{E}{V_{2} + F_{2} \cdot x - \alpha_{2} \cdot F_{1} \cdot x} (Q_{2} + Q_{4} - Q_{6} - F_{2} \cdot \dot{x} + \alpha_{2} \cdot F_{1} \cdot \dot{x} - \alpha_{4} \cdot F_{3} \cdot \dot{z} - q_{2}); \\
\ddot{x} &= \frac{1}{m_{1}} \cdot (F_{2} \cdot p_{2} - F_{1} \cdot (\alpha_{1} \cdot p_{1} + \alpha_{2} \cdot p_{2}) - P); \\
\ddot{z} &= \frac{1}{m_{2}} (F_{2} \cdot \alpha_{3} \cdot p_{1} + F_{3} \cdot \alpha_{4} \cdot p_{2} - \beta_{1} \cdot \dot{z} - \beta_{2} \cdot |\dot{z}| \cdot \dot{z} - c(h + z) - R),
\end{aligned}$$
(1)

где E – приведенный модуль упругости рабочей жидкости; V_1 и V_2 – объемы магистражй 1 и 2 при значении X=0; F_1 и F_2 – площади штоковой и бесштоковой полостей цилиндра; F_3 – площадь торца плунжера клапана; α_1 , α_2 , α_3 , и α_4 – коэффициенты; Q_1 , Q_2 , Q_3 , Q_4 , Q_5 , и Q_6 – расходы; q_1 и q_2 – утечки;

P – сила сопротивления перемещению рабочего органа; m_1 и m_2 – приведенные массы рабочего органа и плунжера клапана; β_1 и β_2 – приведенные коэффициенты линейного в квадратичного сопротивлений демпферного канала клапана; c и h – жесткость и предварительное сжатие пружины клапана; R – гидравлическая сила реакции струи в клапане.

Значения α_l , α_2 , α_3 , α_4 , Q_1 , Q_2 , Q_3 , Q_4 , Q_5 , Q_6 и R для каждой из приведенных на рисунке 1 схем гидроприводов приведены в таблице 1,

где Q_н – номинальная подача насоса при номинальном перепаде давлений p_н в его

напорной и всасывающей полостях; k_{μ} – коэффициент утечек; G – проводимость дросселя; μ – коэффициент расхода клапана; α – диаметр плунжера клапана; ρ – плотность рабочей жидкости; θ – угол истечения струи в клапане.

Значения q_1 и q_2 принимаем равными:

$$q_1 = k_1 \cdot p_1 - k_{12} \cdot (p_1 - p_2);$$

$$q_2 = k_2 \cdot p_2 + k_{12} \cdot (p_1 - p_2);$$

 $q_2 = k_2 \cdot p_2 + k_{12} \cdot (p_1 - p_2);$

где k₁ и k₂ – коэффициенты внешних утечек из магистралей 1 и 2;

*k*₁₂ – коэффициент внутренних утечек.

Значение силы сопротивления Р принимаем равным

$$\mathbf{P} = \mathbf{P}_0 + \boldsymbol{\beta} \cdot \dot{\mathbf{x}} - \mathbf{y}(\mathbf{t});$$

где P_0 и y(t) – постоянная и переменная составляющие силы,

 β – коэффициент вязкого трения.

٢

Статическое состояние рассматриваемых гидроприводов (рисунок 1) может быть описано системой алгебраических уравнений:

$$\begin{cases} Q_{10} - Q_{30} - Q_{50} + \alpha_1 \cdot F_1 \cdot \dot{x}_0 - q_{10} = 0; \\ Q_{20} + Q_{40} - Q_{60} - F_2 \cdot \dot{x}_0 + \alpha_2 \cdot F_1 \cdot \dot{x}_0 - q_{20} = 0; \\ F_2 \cdot p_{20} - F_1 \cdot (\alpha_1 \cdot p_{10} + \alpha_2 p_{20}) - \beta' \cdot \dot{x}_0 - P_0 = 0; \\ F_3 \cdot (\alpha_3 \cdot p_{10} + \alpha_4 \cdot p_{20}) - c \cdot (h + z_0) - R_0) = 0. \end{cases}$$

$$(2)$$

Четыре уравнения системы 2 содержат шесть неизвестных величин: p_{10} , p_{20} , x_0 , z_0 , h в G. Это указывает (косвенным образом) на то, двумя из шести неизвестных следует задаться Это объясняется тем, что при настройке гидропривода на холостом или рабочем ходу регулирование давления p_{20} (p_{10}) клапаном в нагнетательной магистрали происходит за счет предварительного сжатия h пружины, а скорость \dot{x}_0 – посредством изменения проводимо-

сти G дросселя.

Таблица 1.

Коэффициенты	Схема а	Схема б	Схема в	Схема г
α_l	1	1	<u>`</u> 1	0
α_2	0	0	0	1
α3	0		1	
α_4	1		0	
Q_{I}	0		$\mathbf{Q}_{\mathbf{H}} + \mathbf{k}_{\mathbf{H}} \cdot \left \mathbf{P}_{\mathbf{H}} - \mathbf{P}_{\mathbf{I}} \right $	
Q_2	$Q_{H} + k_{H} \cdot P_{H} + P_{2} $		0	
<i>Q</i> ₃	$G \cdot \sqrt{p_1}$	Sigr	$ \mathbf{p}_1 - \mathbf{p}_2 \cdot \mathbf{G} \cdot \sqrt{ \mathbf{p}_1 - \mathbf{p}_2 }$	
Q4	0	Sigr	$ \mathbf{p}_1 - \mathbf{p}_2 \cdot \mathbf{G} \cdot \sqrt{ \mathbf{p}_1 - \mathbf{p}_2 }$	
Qs	0		$0,5 \cdot \mu \cdot \pi \cdot d \cdot (z + z) \cdot \sqrt{\frac{2p_1}{\rho}}$	
Q6	$0,5 \cdot \mu \cdot \pi \cdot d \cdot (z + z) \cdot \sqrt{\frac{2p_2}{\rho}}$			0
R	$\mu \cdot \pi \cdot \mathbf{d} \cdot (\mathbf{z} + \mathbf{z}) \cdot \mathbf{p}_2 \cdot \cos \theta$		$\mu \cdot \pi \cdot d \cdot (z + z) \cdot p_1 \cdot \cos \theta$	
k ₁₂ *	k ₁₂	$k_{12} + \frac{0.5 \cdot G}{\sqrt{p_{10} - p_{20}}}$		
k ₁₁	$k_{12}^* + k_1 + \frac{0.5 \cdot G}{\sqrt{p_{10}}}$	$k_{12}^* + k_1$	$k_{12}^* + k_1 + \frac{\mu}{\sqrt{2}}$	$\frac{\pi \cdot \mathbf{d} \cdot \mathbf{z}_0}{2 \cdot \mathbf{p}_{20} \cdot \mathbf{\rho}} + \mathbf{k}_{\mathrm{H}}$
k ₂₂	$k_{12}^* + k_2 + k_i + 1$	$\frac{\mu \cdot \pi \cdot d \cdot z_0}{2 \cdot p_{20} \cdot \rho}$	k ₁₂ *	$+k_1$
k _I	0		$\mu \cdot \boldsymbol{\pi} \cdot \boldsymbol{d} \cdot \sqrt{\frac{2p_{10}}{\rho}}$	
k ₂	$\mu \cdot \pi \cdot \mathbf{d} \cdot \sqrt{\frac{2\mathbf{p}_{20}}{\rho}}$			0
C*	$C + 2 \cdot \mu \cdot \pi \cdot d \cdot p_{20} \cdot \cos \theta$		$C + 2 \cdot \mu \cdot \pi \cdot$	$d\cdot p_{10}\cdot\cos\theta$
F ₃ *	$F_3 - 2 \cdot \mu \cdot \pi \cdot d \cdot z_0 \cdot \cos \theta$			

Рисунок 2. Зависимость скорости подачи бабки пильного диска отрезного станка 8В66А от силы сопротивления

Как показывает практика, при репении алгебраических уравнений 2 следует задаваться значениями скорости \dot{x}_0 и давления p_{20} (p_{10}), поскольку значение h и G по результатам настройки определить часто невозможно. При заданных значениях p_{20} (p_{10}) и \dot{x}_0 определение значений p_{10} (p_{20}), z_0 , h и G при помощи ЭВМ не представляет затруднений и может быть произведено одним из итерациНеобходимо отметить, что система алгебраических уравнений 2 может быть использована также для построения статических зависимостей гидроприводов, наибольший интерес из которых представляет зависимость скорости \dot{x}_0 рабочего органа от силы сопротивления P_0 . Как пример, на рисунке 2 приведены результаты расчета зависимости скорости подачи бабки пильного диска отрезного станка 8В66А от силы сопротивления. В гидроприводе подачи бабки станка 8В66А реализована схема δ (рисунок 1). Анализ результатов показывает. что гидропривод станка 8В66А обладает малой жесткостью по скорости.

Для исследования собственных колебаний, в том числе оценки устойчивости, и построения амплитудно-частотных характеристик рассматриваемых гидроприводов может быть использована система линейных дифференциальных уравнений, получаемых линеаризацией системы (1).

$$\begin{cases} 1 = \frac{1}{C_{1}} (-k_{11} \cdot x_{1} + k_{12}^{*} \cdot x_{2} + \alpha_{1} \cdot F_{1} \cdot x_{3} - \alpha_{3} \cdot F_{3} \cdot x_{4} - K_{1} \cdot x_{5}); \\ \dot{x}_{2} = \frac{1}{C_{2}} (k_{12}^{*} \cdot x_{1} - k_{22} \cdot x_{2} - (F_{2} - \alpha_{2} \cdot F_{1})x_{3} - \alpha_{4} \cdot F_{3} \cdot x_{4} - K_{2} \cdot x_{5}); \\ \dot{x}_{3} = \frac{1}{m_{1}} (-\alpha_{1} \cdot F_{1} \cdot x_{1} + (F_{2} - \alpha_{2} \cdot F_{1})x_{2} - \beta_{0} \cdot x_{3} + y \cdot (t); \\ \dot{x}_{4} = \frac{1}{m_{2}} (\alpha_{3} \cdot F_{3}^{*} \cdot x_{1} + \alpha_{4} \cdot F_{3}^{*} \cdot x_{2} - \beta_{1} \cdot x_{4} - c^{*} \cdot x_{5}; \quad x_{5} = x_{4}, \end{cases}$$

$$(3)$$

где x_1 и x_2 – приращения давлений ($x_1 = p_1 - p_{10}$; $x_2 = p_2 - p_{20}$); x_3 – приращение скорости рабочего органа ($x_3 = \dot{x} - \dot{x}_0$); x_4 – скорость плунжера; x_5 – приращение ширины щели клапана ($x_5 = z - z_0$); k_{11} ; k_{12}^* и k_{22} – приведенные коэффициенты утечек; K_1 и K_2 – коэффициенты усиления клапана; F_3^* и с^{*} – приведенные с учетом гидродинамической реакция струи площадь торца плунжера и жесткость пружины клапана; C_1 и C_2 – гидравлические емкости магистралей 1 и 2.

$$C_1 = \frac{V_1}{E}; \quad C_2 = \frac{V_2}{E}.$$

Значения k_{12}^* ; k_{11} ; K_1 ; K_2 ; F_3^* и с^{*} приведены в таблице 1.

Собственные колебания гидроприводов описываются характеристическим уравнением:

$$S^{5} + a_{4}S^{4} + a_{3}S^{3} + a_{2}S^{2} + a_{1}S + a_{0} = 0$$

где S – оператор Лапласа; a₄, a₃, a₂, a₁ и a₀ – коэффициенты, значения которых находятся приравниванием нулю определителя системы (3).

Анализ коэффициентов вышеприведенного характеристического уравнения согласно критерию Льенара-Шипора показывает, что причинами возможной неустойчивости рассматриваемых гидроприводов с дроссельным регулированием могут быть «падающая» характеристика силы сопротивления (β <0) и относительно большое значение коэффициента усиления K_1 (K_2). Последний зависит от диаметра d плунжера клапана и перепада давлений p_{10} (p_{20}) на входе-выходе клапана.

Исследование вынужденных колебаний в гидроприводах может быть приведено при помощи передаточных функций, получаемых как частные решения системы линейных дифференциальных уравнений (3) в пространстве изображений [2].

В частности влияние переменной составляющей *y(t)* силы сопротивления на колебания скорости рабочего органа может быть исследовано при помощи передаточной функции вида:

$$W = \frac{1}{m_1} \cdot \frac{S^4 + b_3 S^3 + b_2 S^2 + b_1 S + b_0}{S^5 + a_4 S^4 + a_3 S^3 + a_2 S^2 + a_1 S + a_0},$$
(4)

где b_3 , b_2 , b_1 и b_0 – коэффициенты, определяемые из определителя

Амплитудно-частотные характеристики гидроприводов в соответствии с передаточной учисцией (4) могут быть построены на основе зависимости:

$$A = \frac{1}{m_1} \sqrt{\frac{(b_0 - b_2 \omega^2 + \omega^4) + (b_1 \omega - b_3 \omega^3)^2}{(a_0 - a_2 \omega^2 + a_4 \omega^4)^2 + (a_1 \omega - a_3 \omega^3 + \omega^5)^2}}.$$
 (5)

Рисунок 3. -Амплитудно-частотная характеристика гидропривода подачи отрезного станка 8В66А

На рисунке 3 приведены расчеты амплитудно-частотной характеристики гидропривод: подачи бабки пильного диска станка 8В66А на холостом ходу согласно зависимости (5). Анали: характеристики показывает, что гидропривод имеет ярко выраженный резонансный пик в области 30...40 Гц, свидетельствующий о низкой демпфирующей способности гидропривода.

На рисунке 4 приведены результаты моделирования с учетом сил резания переходных процессов в гидроприводе станка 8В66А при ступенчатом уменьшении сил сопротивления на 0,5 кН. Сила сопротивления принималась равной:

$$\mathbf{P} = \mathbf{T} + \mathbf{P}_{\mathbf{y}0} \cdot \left(\frac{\mathbf{S}_{\mathbf{z}}}{\mathbf{S}_{\mathbf{z}0}}\right)^{\mathbf{y}} - \mathbf{y}(\mathbf{t}),$$

где T – сила трения в направляющих бабки и уплотнениях поршня и штока цилиндра. P_{y0} и S_{z0} – радиальная составляющая сил резания и подача на зуб в установившемся режиме. S_z – подача на зуб; y – показатель степени; y(t) – переменная составляющая сил сопротивления, равная

$$y(t) = 0$$
, при $t < 0$,
 $y(t) = 0,5$ кH, при $t \ge 0$.

Рисунок 4. Переходные процессы в гидроприводе подачи отрезного станка 8В66А

Кривая 3 получена при значении $P_{y0} = 3,3$ кH, кривая $2 - P_{y0} = 5,5$ кH, кривая $1 - P_{y0} = 7,7$ кH. Во всех трех случаях сила трения принималась одинаковой и равной T = 4,6 кH.

Анализ полученных результатов показывает, что с увеличением радиальной составляющей P_{y0} силы резания, повышается жесткость системы, проявляющаяся в повышение частоты собственных колебаний и снижении уровня вынужденных колебаний.

ЛИТЕРАТУРА

1. Коробочкин, Б.Л. Динамика гидравлических систем станков. – М: Машиностроение. 1978 – 495 с. 2. Корн, Г., Корн, Т. Справочник по математике для научных работников и инженеров. – М: Наука. 1973 – 832 с.