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THE STUDY NUMERICAL TO DETECT COLLISIONS USING
NEURAL NETWORK WITH D* ALGORITHM

A numerical study of the proposed iterative algorithm using the Matlab complex is carried out. During the
study, the task of teaching a neural network to plan a route was solved in the same way as the "teacher™
algorithm, for which D* was chosen. The initial filtering option is selected in such a way that, when a
collision occurs, a trajectory point that preceded the collision is fed into the filtered sample, i.e., in which
the neural network incorrectly classified the situation. This method of filtering was not effective, because
the wrong decision that led to the collision could have been made not immediately before the collision, but
earlier. In this regard, the procedure for filtering examples for training has been modified so that when a
collision occurs, maps with the robot's position at all points of its trajectory are added to the training
sample. This allows you to significantly increase the success of achieving the goal.
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Introduction

It is known that a robot is an automatically op-
erating machine that can perform some tasks that
are performed by a human. The mobile robot is spe-
cifically designed for use in environments such as
automated assembly halls, factories, or warehouses
[1]. A distinctive feature of robots is the presence
of a planning system, which today can also use neu-
ral networks with deep learning. Deep learning net-
works are widely used in text [2] and object recog-
nition [3], navigation [4], scene understanding [5],
and using the studied patterns in other domains [6].
Promising areas for the development of neural net-
work systems are research related to deep learning
and self-learning technologies with reinforcement
and use of knowledge bases and programs of infer-
ential learning, a posteriori learning. In automatic
control systems, neural networks are used as adap-
tive controllers, identifiers, and trajectory planners.
The stability and training of neural networks are
exceptional and the most important thing in these
systems. The article [7] presents an algorithm for
training dynamic recurrent neural networks by
Elman based on the optimization of particles in a
swarm. He has developed a new control method in
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which a dynamic identifier allows you to identify
the rotation frequency of an ultrasonic motor. The
mobile system has the implemented ability to move
forward or backward the desired distance, but the
movement is inherently uncertain. Therefore, a
neural network algorithm is used to plan the trajec-
tory in uncertain 2D-environments. As a result of
comparative analysis, the high efficiency of neural
network in solving motion trajectory planning
problems was shown [8]. In the article [9], a neural
network is proposed for identifying the inverse dy-
namics of a discrete object. This allows it to pro-
vide predictive properties to the control system. In
this study, we use convolution of 2D-layers of neu-
ral networks to tackle various complicated prob-
lems while the machine itself tries to explore the
problem when it has enough data. The main chal-
lenge in this work was that the neural network (NN)
controller had no memory of past actions and the
state of the world in the past, so no collisions were
detected. The architecture develops the solutions to
this challenge.
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Problem statement

We consider a mobile robot in a 2D-environ-
ment. The mathematical model of a mobile robot is
described as follows [10, 11].

Vi(t)=R(yi) %
M; - % (t)=B; -u; + Fy,

when yi = [y1i Y2i yai]" is the vector of the position
(Y1i, Y2i) m and orientation (ysi) of the mobile robot
in a fixed coordinate system, OgY 1Y (figure 1),
Xi = [X1i X2i Xai]" is the vector of linear (xui, X2i) and
angular (xs;) velocities of the mobile robot in a
moving coordinate system, OY1Y?2, R(yi) is the kin-
ematics matrix, M; is the inertia matrix, Fg; is the
vector of dynamic forces, ui is the vector of control
actions, Bi is the input matrix.

The robot's navigation system measures vectors
yi and Xi
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Figure 1 — The coordinate system of the mobile robot

The modelling environment we used in this ex-
periment is a discrete map with 50x50 square cells,
as we can see in figure 2.
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Figure 2 — The environment of learning robot

The environment contains up to 12 randomly
placed obstacles. The initial position of the robot is
indicated by a blue circle and the final position is
indicated by a blue star. The path determined by the
D* algorithm (the shortest path algorithm) is repre-
sented by a blue dotted line, and the obstacles are
indicated by red squares.In this paper, the D* algo-
rithm is used as a teacher that enables a mobile ro-
bot to learn independently of its own experience.
The mathematical model of a mobile robot repre-
sented by equations (1) and (2) is considered. The
results of modelling the robot (1) and (2) are used
together with the trained network to update the neu-
ral network parameters for trajectory planning. The
input of the neural block is a map of the environ-
ment and the trajectory developed by D* algo-
rithms.

The situation is divided into nine classes by the
D* algorithm. When planning with D*, the path
passes through the cell numbered N =1, 2, ..., 8
(figure 3), so the state class equals N. If there is no
path from the current position to the robot's desti-
nation, then the state class is 9.
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Figure 3 — Classification of cells adjacent to the robot

The task of a neural network is to lay a path and
avoid collisions. The solution to this problem is di-
vided into two stages. The first stage is basic train-
ing, which is performed by a D* supervisor. The
second stage is the final training, which is per-
formed by the reinforcement learning method.De-
velopment of the training procedure. The study of
the algorithm for the development of the NN train-
ing. During the research, five iterations of training
were carried out, the results of which are shown in
Table and figure 4.

Table 1 — The iterative training of a neural network

Accurac Frequency of
Itera . . successful
- Sample size y rating, -
tion o achievement,
0 %
1 1000 67
Filtered 72 42
2 2000 unfiltered 79 51
Filtered 73 51
3 3000 unfiltered 80 53
Filtered 72 45
4 4000 unfiltered 81 56
Filtered 68 % 59
5 5000 unfiltered 84 % 53

115



A 2D convolutional network is defined for an
image of size h xw x3, where 3 is the number of
channels for an RGB image. A convolutional neu-
ral network contains convolutional layers and aux-
iliary layers that terminate in fully connected lay-
ers. In the first iteration, a sample of 1000 images
were created. This sample is used to train a network
consisting of an input layer, five hidden convolu-
tional layers, three hidden fully connected layers,
and an output layer. The first convolutional layer
contains 32 filters with a size of [3 x 3] and a step
of 2. The second and third layers are also convolu-
tional layers with 64 filters of size [3 x 3] and step
2. The fourth and fifth convolutional layers with
128 filters of size [3 x 3]. Three fully connected
layers with 32, 16, and 8 neurons, respectively,
were also used. All hidden layers use the ReLU ac-
tivation function, which provides the fastest learn-
ing. The training options [12] include the sgdm
solver used, the maximum number of epochs
maxEpochs and the minimum size minibatchSize.
The optimal settings were selected from the exist-
ing literature [13]. The specified network is trained
with the first sample. Then the trained network is
used to further increase the training sample. The
motion of the robot was simulated using a trained
neural network. If the robot allows a collision at
any point, then such a map is added to the training
sample. Otherwise, the situation is not included in
the training sample. From the figure 4 shown the
filtering procedure extends the training sample to
5000 images. At the same time, the training

B Accuracy rating %

72%
79%
51%
73%
51%

42%

I 67%

I  30%

I 53%

achieved an accuracy of 68 % for the sample with
filtering and 84 % for the sample without filtering.
However, the simulation showed that the success
rate in reaching the target was 59 % for the filtered
sample and 53 % for the normal sample. Filtering
efficiency can be greatly improved by including the
entire trajectory in the selection, rather than just the
point at which the collision occurred. This can not
only increase the efficiency in reaching the set tar-
get, but also improve the evaluation of accuracy
during training. The results of neural network train-
ing are shown in Figures below.

Conclusion

We present the preliminary results of the work
of a convolutional 2D neural network (N 1), trained
without any pre-training So you can train a mobile
robot to avoid obstacles. By using specially filtered
images, you can correct any errors. The training
was performed on a low-power laptop (MacBook
Air) with a GPU.

Since the neural network only selects the direc-
tion and speed of the movement, it works faster
than the D* algorithm, which builds the entire path.
Moreover, the time for solving a problem is fixed
by a neural network. IN the future, it is planned to
develop the work by changing the filtering proce-
dure (adding the entire trajectory to the training
sample), increasing the size of the robot and the tar-
get point to improve the quality of the convolu-
tional network, and planning a section of the trajec-
tory by using an approximating neural network.

B Frequency of successful achievement %

I 72%
I 31%
I 56%
I 68%
I 59%
I, 34%
I 53%

I 45%
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Figure 4 — A numerical study of the proposed iterative algorithm
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Training Progress (13-Dec-2019 11:14:47)
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Figure 5 — Training NN with the filtering

Training Progress (11-Dec-2019 15:34:33)
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Figure 6 — Training NN without the filtering
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HOxHbI# QenepanbHbIil yHUBEpCHTET, I'. Taranpor, Poccus

Tocmynuna 6 peoaxyuro 14.05.2022.

IIposedeno uuciennoe ucciedo8anue nPeosioNCeHH020 UMEPAYUOHHO20 AIOPUMMA C UCHONb308AHUEM
komnaexca Matlab. B xode uccnedosanus pewanace 3a0aia obyueHus HeupoOHHOU cemu NAAHUPOBAMb
Mapuwpym maxum dce 00pazom, ¥mo u aieopumm «yuumessy, 8 Kavecmee Komopoeo eviopan D*. Hauano-
HbLIL 6apuanm Guibmpayuu eblOPaH MaKum 00pa3oM, Pu B03HUKHOBEHUU KOLIUSUU 8 (PUILIMPYEMYIO 6bl-
OOPKY nooaemcst mouka mpaeKmopuu, KOmopas npeouecmeosaa KOIIU3UY, m. e. 8 KOmopoul HelupoHHAS.
cemvb HenpasuibHo Kiaccuguyuposaia cumyayuio. Taxou cnocob gursmpayuu okasaics we sQpexmus-
HbIM, M. K. HeBEPHOE peuteHie, KOmopoe NPUueio K KOLIU3UL, MO2IO Oblmb NPUHMO He HenOCPeOCMBEEeHHO
nepeo konusuel, a paree. B smoii cés3u npoyedypa gurempayuu npumepos 0is 00yuenuss bvlia Moou-
Guyuposana makum 0o6pazom, Umoodbl NPU BO3HUKHOBEHULU KOLIUZUU 8 0OVUAIOWYIO 8b100PKY 000AGIAIUCH
Kapmvl ¢ NOAOACEHUEM POOOMA 60 8Cex MOUKAX €20 MpPaekmopuu. Imo no360asem CYujeCmeeHHO Noebi-

CUums ycneuHocms oocmudicerust yenu.

Kntouegwle cnosa: pobom, nianuposarue mpaexmopuil, HeUpoHHas cems, komniexca Matlab.
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