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CAL is a high-level actor-based dataflow language [1–6]. A CAL-program is de-

fined as a network of actors that interact and communicate by sending and receiving 

data (tokens) along data lossless and order preserving communication channels. An 

actor is a computational entity that consists of input and output ports, state variables, 

actions, and a scheduler. Actors are executed in parallel. When an actor is fired, it con-

sumes tokens from input ports, changes the internal state and produces tokens on output 

ports. An action is a piece of computation that an actor performs in the firing process. 

An actor may contain any number of actions. When an actor is being firing, it selects 

one of them based on the availability of input tokens and optionally based on conditions 

relating to the values of tokens and state variables. An action guard enables conditional 

action firing. A finite state machine allows actions to be scheduled according to the 

current state of the actor and action priorities. 

The shortest path problem in a weighted directed cyclic graph [7–13] has many 

application domains. Although a variety of shortest path algorithms in different settings 

exist, the scaling and parallelization of the problem on multi-processor systems are still 

open. Analysis and simulation of the Floyd-Warshall (FW) and Blocked Floyd-Warshall 

(BFW) all-pair shortest paths algorithms [10–11] have shown that the BFW is more suit-

able for parallelization and speeding up the computations. Moreover, it supports spatial 

data locality within block and leads to the reduction of data transfer in hierarchical 

memory and to decreasing the overall execution time. The authors of work [14] proposed 

an advanced heterogeneous blocked all-pair shortest paths algorithm. A drawback of the 

algorithms is the realization of fork-join parallelism, which makes them slower against 

network algorithms. Such computer architectures as multi-core systems include a set of 

cores and a hierarchical memory consisting of local and shared cache levels, which differ 

on memory capacity and data transfer time delays. The cores read and write data through 

fast local caches, and therefore efficiently execute algorithms which support spatial and 

temporal locality in big data processing. 

The advantage of the blocked Floyd–Warshall (BFW) Algorithm 2 proposed in 

[10, 11, 14] is the introduction of spatial data locality due to decomposing matrix 

D[N×N] of graph edge weights into blocks of size S×S each and forming a blocked 

matrix B[M×M], where M = N / S is the number of blocks per row. The algorithm 

provides sequential data locality within each block. Its main loop has M iterations, S 

times less compared to FW. Every iteration of the loop recalculates each block once 

and tries to update each element S times. Totally, every element of matrix D has N 

attempts to update. The block recalculation is performed locally by using from one to 

two other blocks. Algorithm 2, BCA implements the FW algorithm, recalculates block 

B1 consuming two additional blocks B2 and B3. It is possible to choose the block size 
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in such a way as the processed blocks could be deployed in fast caches simultaneously, 

which reduces the data traffic between memory levels. The BFW algorithm operation 

time crucially depends on which level of memory the matrix D fits completely in. If in 

level L1 and/or L2 do, the algorithm runs quickly. If level L3 does, the data transfer 

time delay is higher, and the algorithm runs slower. The slowest case takes place when 

the size of matrix D is larger than the size of cache L3; elements of D are read from 

and written to main memory many times, which produces big cache pressure and con-

sumes much time.  

To speed up the shortest paths algorithm search due to asynchronous behavior 

[15–17], the paper introduces a dataflow network of actors, which is realized in the 

CAL language [1]. It also presents a CAL-engine implemented in the C/C++ language 

as a multi-threaded application on multi-core systems. The CAL-engine efficiently ac-

counts for features of the dataflow network.  

 

 

Let assume the D matrix be mapped to a B[33] blocked matrix. In this case, we 

can model each block Brc by a CAL actor for which M and B are global variables. Fig-

ure 1 shows the block-actor interface of four input ports, Lr1, Lr2, L1c and L2c, and two 

output ports, Lr and Lc. The input ports receive tokens from output ports of other actors, 

which describe the calculation level of associated blocks. The output ports Lr and Lc 

describe the Brc block calculation level that is used by other blocks located in row r and 

column c. We recognize two types of block-actors: diagonal and non-diagonal. Algo-

rithm 3 depicts the behavior of CAL-actor Block_0_0 that models the calculation of di-

agonal block B00. Input ports L_0_1 and L_0_2 describe the calculation level of the B01 

and B02 blocks in row 0. Input ports L_1_0 and L_2_0 describe the calculation level of 

the B10 and B20 blocks in column 0. Output ports Lrow and Lcol describe the calculation 

level of block B00. State variables Lev, Row and Col describe the calculation level, row 

and column respectively of block B00. The Block_0_0 actor contains three actions: one 

diagonal and two peripherals. The input and output tokens, and the guard condition of 

Algorithm 1: Blocked Floyd–Warshall (BFW) 

 

Input: A number N of graph vertices 

Input: A matrix W of graph edge weights 

Input: A size S of block 

Output: A blocked matrix B of path distances  

M  N / S     B[MM]  W[NN] 

for m  1 to M do 

BCA (Bm,m, Bm,m, Bm,m)                         // D0 

for i  1 to M do 

if i  m then 

BCA (Bi,m, Bi,m, Bm,m)                // C1 

BCA (Bm,i, Bm,m, Bm,i)                // C2 

for i  1 to M do 

if i  m then 

for j  1 to M do 

if j  m then 

BCA (Bi,j, Bi,m, Bm,j)       // P3 

return B 

 

 

Algorithm 2: Block calculation (BCA) 

 

Input: A size S of block 

Input: Blocks B1, B2 and B3 

Output: B1 – recalculated block 

for k  1 to S do 

for i  1 to S do 

for j  1 to S do 

sum  b2
i,k + b3

k,j 

if b1
i,j > sum then b1

i,j  sum 

return B1 
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the diagonal action distinct from those of the peripheral one. The diagonal action has no 

input token and has two output tokens associated with the Lrow and Lcol ports and get-

ting the value of state variable Lev. The guard condition requires Lev to be equal to Row. 

The action body increments the block calculation level and calls the BCA function to 

recalculate the diagonal block. The action is fired when the block calculation level is 

equal to its row and column. Each of the two peripheral actions has three input and no 

output tokens. In the first action, two input tokens L01 and L10 arrive from ports L_0_1 

and L_1_0, and the third token is a constant k. The guard condition requires Lev be lower 

than the calculation levels L01 and L10. The action body increments the block calcula-

tion level and calls the BCA function to recalculate the Brc block over the Brk and Bkc 

blocks. The peripheral action is fired when the input tokens have arrived and the block 

Brc calculation level is lower than those of blocks Brk and Bkc. 

 

Figure 1 – Interface of the Arc CAL-actor that models the calculation of block Brc in matrix D[33] 

Algorithm 4 depicts the CAL-actor Block_0_1 that models the calculation of non-

diagonal block B01. Input ports L_0_0 and L_0_2 describe the calculation level of 

B00 and B02 blocks in row 0. Input ports L_1_1 and L_2_1 describe the calculation level 

of B11 and B21 blocks in column 1. Output ports Lrow and Lcol describe the calculation 

level of blocks B01. State variables Lev, Row and Col describe the calculation level, row 

and column of block B01. 

 

Algorithm 3: CAL-actor Block_0_0 calculating diagonal block B00 of matrix B[33]  

actor Block_D ()    int L_0_1, int L_0_2, int L_1_0, int L_2_0 ==>  int Lrow, int Lcol: 

int Lev:= 0; 

int Row:= 0; 

int Col:= 0; 

Diagonal: action    ==>  Lrow: [Lev], Lcol: [Lev]  

guard   Lev = Row 

do 

Lev:= Lev + 1; 

BCA (B[Row * M + Col], B[Row * M + Col], B[Row * M + Col]); 

end 

Peripheral_1: action  L_0_1: [L01], L_1_0: [L10], const#1:[k] ==> 

guard   L01 >= Lev + 1 and L10 >= Lev + 1 

do 
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Lev:= Lev + 1; 

BCA (B[Row  * M + Col], B[Row  * M + k], B[k  * M + Col]); 

end 

Peripheral_2: action  L_0_2: [L02], L_2_0: [L20], const#2:[k] ==>   

guard   L02 >= Lev + 1 and L20 >= Lev + 1 

do 

Lev:= Lev + 1; 

BCA (B[Row  * M + Col], B[Row  * M + k], B[k  * M + Col]); 

end 

end 

 

Algorithm 4: CAL- actor Block_0_1 calculating non-diagonal block B01 of matrix 

B[33]  

actor Block_N ()    int L_0_0, int L_0_2, int L_1_1, int L_2_1 ==>  int Lrow, int Lcol: 

int Lev:= 0; 

int Row:= 0; 

int Col:= 1; 

Cross1: action  L_1_1: [L11]  ==>  Lrow: [Lev]  

guard   Col = L11 - 1 and Lev = L11 – 1 

do 

Lev := Lev + 1; 

BCA (B[Row  * M + Col], B[Row  * M + Col], B[Col  * M + Col]); 

end 

Cross2: action  L_0_0: [L00]  ==>  Lcol: [Lev]  

guard   Row = L00 - 1 and Lev = L00 – 1 

do 

Lev:= Lev + 1; 

BCA (B[Row  * M + Col], B[Row  * M + Row], B[Row  * M + Col]); 

end 

Peripheral_3: action  L_0_2: [L02], L_2_1: [L21], const#2:[k]  ==>   

guard   L02 >= Lev + 1 and L21 >= Lev + 1 

do 

Lev:= Lev + 1; 

BCA (B[Row  * M + Col], B[Row  * M + k], B[k  * M + Col]); 

end 

end 

Actor Block_0_1 contains three actions: Cross1, Cross2 and Peripheral. The 

Cross1 action has an input token L11 associated with port L_1_1, and has an output 

token associated with port Lrow and getting the value from state variable Lev. The 

guard condition requires Col and Lev be equal to L111. The action body increments 

the block calculation level and calls the BCA function to recalculate block B01 over 

block B11. The Cross1 action is fired when a token arrives at its input port and its guard 

condition evaluates to true. The behavior of Cross2 action is similar to those of Cross1 
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action. The behavior of the Peripheral action in a non-diagonal actor is the same as 

those in the diagonal one. 

Composing the actors into a network together with setting connections among input 

and output ports and locating buffers at the input ports establish a dataflow network. The 

network is a coordination model of the concurrent actor computation. Fig. 2 shows a net-

work of nine actors for the B[3  3] matrix. Three actors are diagonal, and six actors are 

non-diagonal. Right output ports connect actors along rows. Bottom output ports connect 

actors along columns. All actors can be fired simultaneously.  

 

Figure 2 – CAL network of two types block actors for B[33] matrix 

To implement the behavior of actors, actions and dataflow network on a multi-

core system, we have developed a C/C++ based CAL language engine. Every compo-

nent needed for the CAL runtime system is implemented by means of an appropriate 

C/C++ class of objects. As a result, a CAL network and each of its actors are instanti-

ated via complex data structures and a set of methods in C/C++. All actors operate 

concurrently. One actor sends a flow of tokens to other actors through buffers and ports. 

Since several actors update common variables in buffers, the engine synchronizes the 

actor’s communications and the data processing. 

We have generated dataflow actor networks for various block-matrix size, M and 

have done experiments on randomly generated weighted complete graphs of 1200, 

2400 and 3600 vertices. Experimental results shown in fig. 3 are obtained on the i7-

9750h processor: 6 cores, 12 logical processors, 2.60 GHz of frequency, and 16 GB of 

main memory. Fig. 3 compares the speedup the multi-threaded dataflow CAL-

networks implementing BFW have given against the single-thread FW implementa-

tion. On the block-matrix of 1200 graph vertices, the highest speedup of about 5 has 

been obtained. On 2400 graph vertices providing higher load of cores, the CAL-

network has given the speedup larger than the number of cores (more than 6) on ma-

trices B[5×5], B[6×6] and B[7×7]. On 3600 graph vertices the speedup is even larger 

(about 7) on matrix B[6×6]. On 3600 graph vertices the speedup is even larger (about 

7) on matrix B[6×6]. 
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Conclusion. The paper has considered the solving of all-pair shortest paths prob-

lem on large graphs by means of the dataflow computation model of the CAL actor 

language. The proposed CAL language engine-based actor, action and dataflow net-

work models constitute a high-performance scalable parallel implementation of 

blocked shortest paths algorithms on multicore systems.  

 

Figure 3 – Speedup (vertical axis) of multi-threaded dataflow network BFW against single-thread 

FW vs. M (horizontal axis) on graph size of 1200, 2400 and 3600 vertices on i7-9750h processor 
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