
24

UDC 004

DATAFLOW NETWORK OF CAL-ACTORS FOR

ALL-PAIR SHORTEST PATHS SEARCH

Prihozhy A. A.

Belarusian National Technical University, Minsk, Belarus

prihozhy@yahoo.com

CAL is a high-level actor-based dataflow language [1–6]. A CAL-program is de-

fined as a network of actors that interact and communicate by sending and receiving

data (tokens) along data lossless and order preserving communication channels. An

actor is a computational entity that consists of input and output ports, state variables,

actions, and a scheduler. Actors are executed in parallel. When an actor is fired, it con-

sumes tokens from input ports, changes the internal state and produces tokens on output

ports. An action is a piece of computation that an actor performs in the firing process.

An actor may contain any number of actions. When an actor is being firing, it selects

one of them based on the availability of input tokens and optionally based on conditions

relating to the values of tokens and state variables. An action guard enables conditional

action firing. A finite state machine allows actions to be scheduled according to the

current state of the actor and action priorities.

The shortest path problem in a weighted directed cyclic graph [7–13] has many

application domains. Although a variety of shortest path algorithms in different settings

exist, the scaling and parallelization of the problem on multi-processor systems are still

open. Analysis and simulation of the Floyd-Warshall (FW) and Blocked Floyd-Warshall

(BFW) all-pair shortest paths algorithms [10–11] have shown that the BFW is more suit-

able for parallelization and speeding up the computations. Moreover, it supports spatial

data locality within block and leads to the reduction of data transfer in hierarchical

memory and to decreasing the overall execution time. The authors of work [14] proposed

an advanced heterogeneous blocked all-pair shortest paths algorithm. A drawback of the

algorithms is the realization of fork-join parallelism, which makes them slower against

network algorithms. Such computer architectures as multi-core systems include a set of

cores and a hierarchical memory consisting of local and shared cache levels, which differ

on memory capacity and data transfer time delays. The cores read and write data through

fast local caches, and therefore efficiently execute algorithms which support spatial and

temporal locality in big data processing.

The advantage of the blocked Floyd–Warshall (BFW) Algorithm 2 proposed in

[10, 11, 14] is the introduction of spatial data locality due to decomposing matrix

D[N×N] of graph edge weights into blocks of size S×S each and forming a blocked

matrix B[M×M], where M = N / S is the number of blocks per row. The algorithm

provides sequential data locality within each block. Its main loop has M iterations, S

times less compared to FW. Every iteration of the loop recalculates each block once

and tries to update each element S times. Totally, every element of matrix D has N

attempts to update. The block recalculation is performed locally by using from one to

two other blocks. Algorithm 2, BCA implements the FW algorithm, recalculates block

B1 consuming two additional blocks B2 and B3. It is possible to choose the block size

25

in such a way as the processed blocks could be deployed in fast caches simultaneously,

which reduces the data traffic between memory levels. The BFW algorithm operation

time crucially depends on which level of memory the matrix D fits completely in. If in

level L1 and/or L2 do, the algorithm runs quickly. If level L3 does, the data transfer

time delay is higher, and the algorithm runs slower. The slowest case takes place when

the size of matrix D is larger than the size of cache L3; elements of D are read from

and written to main memory many times, which produces big cache pressure and con-

sumes much time.

To speed up the shortest paths algorithm search due to asynchronous behavior

[15–17], the paper introduces a dataflow network of actors, which is realized in the

CAL language [1]. It also presents a CAL-engine implemented in the C/C++ language

as a multi-threaded application on multi-core systems. The CAL-engine efficiently ac-

counts for features of the dataflow network.

Let assume the D matrix be mapped to a B[33] blocked matrix. In this case, we

can model each block Brc by a CAL actor for which M and B are global variables. Fig-

ure 1 shows the block-actor interface of four input ports, Lr1, Lr2, L1c and L2c, and two

output ports, Lr and Lc. The input ports receive tokens from output ports of other actors,

which describe the calculation level of associated blocks. The output ports Lr and Lc

describe the Brc block calculation level that is used by other blocks located in row r and

column c. We recognize two types of block-actors: diagonal and non-diagonal. Algo-

rithm 3 depicts the behavior of CAL-actor Block_0_0 that models the calculation of di-

agonal block B00. Input ports L_0_1 and L_0_2 describe the calculation level of the B01

and B02 blocks in row 0. Input ports L_1_0 and L_2_0 describe the calculation level of

the B10 and B20 blocks in column 0. Output ports Lrow and Lcol describe the calculation

level of block B00. State variables Lev, Row and Col describe the calculation level, row

and column respectively of block B00. The Block_0_0 actor contains three actions: one

diagonal and two peripherals. The input and output tokens, and the guard condition of

Algorithm 1: Blocked Floyd–Warshall (BFW)

Input: A number N of graph vertices

Input: A matrix W of graph edge weights

Input: A size S of block

Output: A blocked matrix B of path distances

M N / S B[MM] W[NN]

for m 1 to M do

BCA (Bm,m, Bm,m, Bm,m) // D0

for i 1 to M do

if i m then

BCA (Bi,m, Bi,m, Bm,m) // C1

BCA (Bm,i, Bm,m, Bm,i) // C2

for i 1 to M do

if i m then

for j 1 to M do

if j m then

BCA (Bi,j, Bi,m, Bm,j) // P3

return B

Algorithm 2: Block calculation (BCA)

Input: A size S of block

Input: Blocks B1, B2 and B3

Output: B1 – recalculated block

for k 1 to S do

for i 1 to S do

for j 1 to S do

sum b2
i,k + b3

k,j

if b1
i,j > sum then b1

i,j sum

return B1

26

the diagonal action distinct from those of the peripheral one. The diagonal action has no

input token and has two output tokens associated with the Lrow and Lcol ports and get-

ting the value of state variable Lev. The guard condition requires Lev to be equal to Row.

The action body increments the block calculation level and calls the BCA function to

recalculate the diagonal block. The action is fired when the block calculation level is

equal to its row and column. Each of the two peripheral actions has three input and no

output tokens. In the first action, two input tokens L01 and L10 arrive from ports L_0_1

and L_1_0, and the third token is a constant k. The guard condition requires Lev be lower

than the calculation levels L01 and L10. The action body increments the block calcula-

tion level and calls the BCA function to recalculate the Brc block over the Brk and Bkc

blocks. The peripheral action is fired when the input tokens have arrived and the block

Brc calculation level is lower than those of blocks Brk and Bkc.

Figure 1 – Interface of the Arc CAL-actor that models the calculation of block Brc in matrix D[33]

Algorithm 4 depicts the CAL-actor Block_0_1 that models the calculation of non-

diagonal block B01. Input ports L_0_0 and L_0_2 describe the calculation level of

B00 and B02 blocks in row 0. Input ports L_1_1 and L_2_1 describe the calculation level

of B11 and B21 blocks in column 1. Output ports Lrow and Lcol describe the calculation

level of blocks B01. State variables Lev, Row and Col describe the calculation level, row

and column of block B01.

Algorithm 3: CAL-actor Block_0_0 calculating diagonal block B00 of matrix B[33]

actor Block_D () int L_0_1, int L_0_2, int L_1_0, int L_2_0 ==> int Lrow, int Lcol:

int Lev:= 0;

int Row:= 0;

int Col:= 0;

Diagonal: action ==> Lrow: [Lev], Lcol: [Lev]

guard Lev = Row

do

Lev:= Lev + 1;

BCA (B[Row * M + Col], B[Row * M + Col], B[Row * M + Col]);

end

Peripheral_1: action L_0_1: [L01], L_1_0: [L10], const#1:[k] ==>

guard L01 >= Lev + 1 and L10 >= Lev + 1

do

27

Lev:= Lev + 1;

BCA (B[Row * M + Col], B[Row * M + k], B[k * M + Col]);

end

Peripheral_2: action L_0_2: [L02], L_2_0: [L20], const#2:[k] ==>

guard L02 >= Lev + 1 and L20 >= Lev + 1

do

Lev:= Lev + 1;

BCA (B[Row * M + Col], B[Row * M + k], B[k * M + Col]);

end

end

Algorithm 4: CAL- actor Block_0_1 calculating non-diagonal block B01 of matrix

B[33]

actor Block_N () int L_0_0, int L_0_2, int L_1_1, int L_2_1 ==> int Lrow, int Lcol:

int Lev:= 0;

int Row:= 0;

int Col:= 1;

Cross1: action L_1_1: [L11] ==> Lrow: [Lev]

guard Col = L11 - 1 and Lev = L11 – 1

do

Lev := Lev + 1;

BCA (B[Row * M + Col], B[Row * M + Col], B[Col * M + Col]);

end

Cross2: action L_0_0: [L00] ==> Lcol: [Lev]

guard Row = L00 - 1 and Lev = L00 – 1

do

Lev:= Lev + 1;

BCA (B[Row * M + Col], B[Row * M + Row], B[Row * M + Col]);

end

Peripheral_3: action L_0_2: [L02], L_2_1: [L21], const#2:[k] ==>

guard L02 >= Lev + 1 and L21 >= Lev + 1

do

Lev:= Lev + 1;

BCA (B[Row * M + Col], B[Row * M + k], B[k * M + Col]);

end

end

Actor Block_0_1 contains three actions: Cross1, Cross2 and Peripheral. The

Cross1 action has an input token L11 associated with port L_1_1, and has an output

token associated with port Lrow and getting the value from state variable Lev. The

guard condition requires Col and Lev be equal to L111. The action body increments

the block calculation level and calls the BCA function to recalculate block B01 over

block B11. The Cross1 action is fired when a token arrives at its input port and its guard

condition evaluates to true. The behavior of Cross2 action is similar to those of Cross1

28

action. The behavior of the Peripheral action in a non-diagonal actor is the same as

those in the diagonal one.

Composing the actors into a network together with setting connections among input

and output ports and locating buffers at the input ports establish a dataflow network. The

network is a coordination model of the concurrent actor computation. Fig. 2 shows a net-

work of nine actors for the B[3 3] matrix. Three actors are diagonal, and six actors are

non-diagonal. Right output ports connect actors along rows. Bottom output ports connect

actors along columns. All actors can be fired simultaneously.

Figure 2 – CAL network of two types block actors for B[33] matrix

To implement the behavior of actors, actions and dataflow network on a multi-

core system, we have developed a C/C++ based CAL language engine. Every compo-

nent needed for the CAL runtime system is implemented by means of an appropriate

C/C++ class of objects. As a result, a CAL network and each of its actors are instanti-

ated via complex data structures and a set of methods in C/C++. All actors operate

concurrently. One actor sends a flow of tokens to other actors through buffers and ports.

Since several actors update common variables in buffers, the engine synchronizes the

actor’s communications and the data processing.

We have generated dataflow actor networks for various block-matrix size, M and

have done experiments on randomly generated weighted complete graphs of 1200,

2400 and 3600 vertices. Experimental results shown in fig. 3 are obtained on the i7-

9750h processor: 6 cores, 12 logical processors, 2.60 GHz of frequency, and 16 GB of

main memory. Fig. 3 compares the speedup the multi-threaded dataflow CAL-

networks implementing BFW have given against the single-thread FW implementa-

tion. On the block-matrix of 1200 graph vertices, the highest speedup of about 5 has

been obtained. On 2400 graph vertices providing higher load of cores, the CAL-

network has given the speedup larger than the number of cores (more than 6) on ma-

trices B[5×5], B[6×6] and B[7×7]. On 3600 graph vertices the speedup is even larger

(about 7) on matrix B[6×6]. On 3600 graph vertices the speedup is even larger (about

7) on matrix B[6×6].

29

Conclusion. The paper has considered the solving of all-pair shortest paths prob-

lem on large graphs by means of the dataflow computation model of the CAL actor

language. The proposed CAL language engine-based actor, action and dataflow net-

work models constitute a high-performance scalable parallel implementation of

blocked shortest paths algorithms on multicore systems.

Figure 3 – Speedup (vertical axis) of multi-threaded dataflow network BFW against single-thread

FW vs. M (horizontal axis) on graph size of 1200, 2400 and 3600 vertices on i7-9750h processor

References

1. Eker J., Janneck J. CAL language report: Specification of the CAL actor lan-

guage. Dept. UCB/ERL, Univ. California, Berkeley, Berkeley, CA, USA, Tech. Rep.

M03/48, Dec. 2003.

2. Mattavelli M., Amer I., Raulet M. The Reconfigurable Video Coding

Standard. [Standards in a Nutshell], Signal Processing Magazine, IEEE 27 (3) (2010)

159 –167 p.

3. Prihozhy A. A., Casale-Brunet S., Bezati E., Mattavelli М. Pipeline Synthesis

and Optimization from Branched Feedback Dataflow Programs. Journal of Signal Pro-

cessing Systems, Springer Nature, 2020, Vol. 92. – 1091–1099 p.

4. Prihozhy A. A., Casale-Brunet S., Bezati E., Mattavelli M. Efficient Dynamic

Optimization Heuristics for Dataflow Pipelines. IEEE International Workshop on Sig-

nal Processing Systems, IEEE. – 337–342 p.

5. Rahman A. H. Ab., Prihozhy A. A., Mattavelli M. Pipeline synthesis and

optimization of FPGA-based video processing applications with CAL. EURASIP

Journal on Image and Video Processing, vol. 2011:19. – 1–28 p.

6. Prihozhy A. A., Mattavelli M., Mlynek D. Evaluation of Parallelization Po-

tential for Efficient Multimedia Implementations: Dynamic Evaluation of Algorithm

Critical Path. IEEE Trans. on Circuits and Systems for Video Technology, Vol. 15, No.

5. – 593–608 p.

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

1 2 3 4 5 6 7 8 9

Sp
e

e
d

 u
p

Number of blocks

S=1200 S=2400 S=3600

30

7. Floyd R. W. Algorithm 97: Shortest path. Communications of the ACM, 1962,

5(6). – 345 p.

8. Madkour A, Aref W. G., Rehman F. U., Rahman M. A., Basalamah S. A.

Survey of Shortest-Path Algorithms. – 26 p.

9. Prihozhy A. A., Mattavelli M., Mlynek D. Data dependences critical path

evaluation at C/C++ system level description. International Workshop PATMOS'

2003, Springer, Berlin, Heidelberg. – 2003. – 569–579 p.

10. Venkataraman G., Sahni S., Mukhopadhyaya S. A. Blocked All-Pairs Shortest

Paths Algorithm. Journal of Experimental Algorithmics (JEA), Vol 8, 2003. – 857–

874 p.

11. Park J. S., Penner M., Prasanna V. K. Optimizing graph algorithms for im-

proved cache performance. IEEE Trans. on Parallel and Distributed Systems, 2004,

15(9). – 769–782 p.

12. Карасик О. Н., Прихожий А. А. Потоковый блочно-параллельный алго-

ритм поиска кратчайших путей на графе. Доклады БГУИР. – 2018. – № 2. –77–

84 c.

13. Albalawi E., Thulasiraman P., Thulasiram R. Task Level Parallelization of All

Pair Shortest Path Algorithm in OpenMP 3.0. 2nd International Conference on Ad-

vances in Computer Science and Engineering (CSE 2013), 2013, Los Angeles, CA,

July 1–2, 2013. – 109–112 p.

14. Прихожий, А. А. Разнородный блочный алгоритм поиска кратчайших

путей между всеми парами вершин графа / А. А. Прихожий, О. Н. Карасик // Си-

стемный анализ и прикладная информатика. – № 3. – 2017. – 68–75 c.

15. Прихожий А. А., Ждановский А. М., Карасик О. Н., Маттавелли М. Эв-

ристический генетический алгоритм оптимизации вычислительных конвейеров.

Доклады БГУИР, 2017, № 1/ – 34–41 c.

16. Прихожий, А. А. Распределенная и параллельная обработка данных. –

Минск: БНТУ, 2016. – 90 с.

17. Prihozhy A. A., Mlynek D., Solomennik M., Mattavelli M. Techniques for

Optimization of Net Algorithms. PARELEC 2002 – Parallel Computing in Electrical

Engineering, IEEE CS Press, 2002. – 211–216 p.

