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The addition operation is critical in almost all modern processing units [1–6]. The 

adder parameters such as implementation area, latency and power dissipation decide 

the choice of adders for different applications. There is an extensive research attention 

towards designing higher speed and less complex adder architectures for electronic and 

quantum implementations. Decision diagram-based approaches [7–9] are  a promising 

direction in the design of adders with required properties. The traditional binary deci-

sion diagrams have been extended to functional, biconditional, if-decision and other 

diagram types [10–18], which are more suitable for the adder design and optimization. 

The adder fan-out is crucial for most of electronic and quantum implementation tech-

nologies. This work proposes a formal method of inferring logarithmic-depth if-deci-

sion diagrams of low fan-out parallel adders. In the diagrams, long paths are split to 

shorter paths, which reduce time delays in the adder. Experimental results obtained in 

the work show that the parallel adder fan-out does not exceed four, which is much less 

than the fan-out of parallel adders generated using if-decision diagrams and described 

in [6]. The decrease of fan-out costs certain increase in adder size and depth. 

The ripple-carry adder is constructed from the algorithm of adding two numbers 

represented in binary number system [1]. The look ahead adders such as Kogge-Stone 

[2], Brent-Kung [3] and others [4] are constructed on the concept of generation and 

propagation signals. The quantum adders [9–11] are constructed on the classical theory 

of adders from one side and on the theory of reversible functions from other side. In-

stead, this paper develops a method of formal inference of all kinds of adders that is 

based on the theory of incompletely specified functions and if-decision diagrams. The 

key mechanism of inferring fast parallel adders is the split of long paths in the if-deci-

sion diagram. Advantages of such an approach are an efficient exploration of the adder 

design space and the possibility of generating adders with required properties. 

The author of [6] proposed a method of inference fast low-size parallel adders of 

any bit-size, which have many advantages and only one essential drawback, i. e., their 

fan-out grows rapidly depending on the adder bit-width. Many technologies cannot 

overcome the drawback and lead to adder implementations with worse parameters than 

expected. This paper proposes a technique, which is capable of generation parallel log-

arithmic-depth adders whose fan-out is restricted and small. 

Let f(x) and d(x) be Boolean functions of vector argument x = (x1, …, xn). Let 

fon(x) be an on-set of variable x values such that f(x) = 1. Variable g represents Boolean 

function min (f | d) belonging to the slice of functions defined as follows [12–14]:  

(𝑓 ∧ 𝑑)𝑜𝑛 ⊆ 𝑔𝑜𝑛 ⊆ (𝑓 ∨ 𝑑)𝑜𝑛 (1) 
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where  and  are Boolean conjunction and disjunction respectively. Analogously, 

variable h represents Boolean function min (f | d). The following expansion of func-

tion f on function d holds: 

𝑓 = 𝑑 ∧ 𝑚𝑖𝑛(𝑓|𝑑) ∨ 𝑑 ∧ 𝑚𝑖𝑛(𝑓|𝑑) (2) 

where  is Boolean negation. The expansion allows the construction of a nonterminal 

node (fig. 1a) of an if-decision diagram (IFD) proposed in [15–17]. Fig. 1b depicts 

a two-root IFD of 1-bit full adder. Fig. 2 depicts a many-root IFD of 8-bit ripple-carry 

adder. The IFD contains a nine-node long path which cause big time delays in adder 

implementation. To obtain faster adders, a technique proposed in [5] splits the long 

paths originated from the nodes s0…s7 and c7 of the IFD into shorter paths, which 

leads to a new IFD of the parallel many-bit adder of logarithmic-depth. The key draw-

back of the IFD is the exponential growth of its fan-out. 

 

 

a) b) 

Figure 1 – If-decision diagram: 

a – IFD’s nonterminal node; b – IFD of 1-bit full adder 

 

 

Figure 2 – IFD0 of ripple carry 8-bit adder (dash is complement) 

  

In the paper we propose a formal method of stepwise transforming the IFD0 of 

a ripple-carry adder (fig. 2) to a parallel low fan-out IFD of logarithmic-depth adder. 

The ripple-carry adder is slow since it has the longest path of nine nodes. The transfor-

mation consists in multiple application of a transformation rule to long paths of the 
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source or intermediate IFDs. The rule is a pair of IFDs: the IFDleft has three-node depth 

(fig. 3a), and the IFDright has a reduced two-node depth (fig. 3b). The rule splits the 

three-node path into four two-node paths. One application of the rule reduces the long-

est path length by one. 

 

 

a) b) 

Figure 3 – Diagram transformation rule: 

a – IFDleft of one three-node path; b – IFDright of four two-node paths 

 

Observing the IFDleft and IFDright of fig. 3, we can conclude that two nodes labeled 

by variable xi+1 are identical. The same concerns two nodes labeled by variable xi. Two 

nodes which are labeled by xi+2, are represented by different sub-diagrams. To prove 

their functional equivalence, we formulate an equation for each of them. 

IFD1: 

𝑥𝑖+2 = 𝑦𝑖+2,0 ∧ 𝑧𝑖+2,0 ∨ 𝑦𝑖+2,0 ∧ (𝑦𝑖+1,0 ∧ 𝑧𝑖+1,0 ∨ 𝑦𝑖+1,0 ∧ 𝑥𝑖) 

IFD2: 

𝑦𝑖+2,1 = 𝑦𝑖+2,0 ∨ 𝑦𝑖+1,0 and 

𝑥𝑖+2 = 𝑦𝑖+2,1 ∧ (𝑦𝑖+2,0 ∧ 𝑧𝑖+2,0 ∨ 𝑦𝑖+2,0 ∧ 𝑧𝑖+1,0) ∨ 𝑦𝑖+2,1 ∧ 𝑥𝑖 = 

= 𝑦𝑖+2,0 ∧ 𝑧𝑖+2,0 ∨ 𝑦𝑖+2,0 ∧ 𝑦𝑖+1,0 ∧ 𝑧𝑖+1,0 ∨ 𝑦𝑖+2,0 ∧ 𝑦𝑖+1,0 ∧ 𝑥𝑖 = 

= 𝑦𝑖+2,0 ∧ 𝑧𝑖+2,0 ∨ 𝑦𝑖+2,0 ∧ (𝑦𝑖+1,0 ∧ 𝑧𝑖+1,0 ∨ 𝑦𝑖+1,0 ∧ 𝑥𝑖) 

 

It is easy to see from the equations that the xi+2 node’s semantics is the same in 

IFDleft and IFDright. Therefore, the diagrams are functionally equivalent.  

We can apply the transformation rule to the longest path of ripple carry adder 

IFD0 in different ways. Every application adds two nodes to the IFD. Different ways 

are possible for the rule application, which lead to different number of additional nodes 

in IFD. The longest path of IFD0 shown in fig. 2 consists of 9 nodes. Our first way of 

transformation applies the rule to the following node-sets: 

{c7, c6, c5}, {c6, c5, c4},{c5, c4, c3},{c4, c3, c2},{c3, c2, c1} and {c2, c1, c0}. 
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It yields the IFD2 depicted in fig. 4. The 9-node path is split into two shorter          

6-node paths: 1) s7, c6, c4, c2, c0 and e; 2) c7, c5, c3, c1, c0 and e. The depth reduction 

costs of the increase in the node count by 12. Nodes across the diagram bottom row 

have the highest fan-out of 4. 

Our next transformation step is to split each of the 6-node paths into shorter paths 

without increasing the fan-out. It applies the rule to node-sets {c7, c5, c3} and {c6, c4, 

c2}. Fig. 5 depicts the resulting IFD2. The attempt is not successful since the obtained 

diagram still has a path of 6 nodes. 

 

 

Figure 4 – Split of nine-node path of IFD0 to two six-node paths of IFD2 

 

 

Figure 5 – Low-fan-out IFD2 of six-depth for look ahead eight-bit parallel adder 

 

Tab. 1 reports experimental results for two methods of transforming the IFD of 

ripple-carry adder to logarithmic-depth IFDs of the parallel adder. The first method 

was proposed in [5–6], and the second one is based on the above-described transfor-

mation rule. The IFD depth, size, maximum and average fan-out depend on the adder 

bit-width, which varies in the range from 8 to 1024 bit. The key difference between the 

methods is the range of fan-out values. The fan-out grows exponentially from 6 to 514 

for the first method. It keeps the constant fan-out value of 4 for all bit-width for the 
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second method. The cost of such an advance of the second method is the increase in 

the IFD depth and size. Tab. 2 shows that the first method has a gain in smaller depth 

by up to 66.7 % and a gain in smaller size by up to 54.9 %. The second method has 

a gain in smaller fan-out by up to 128.5 times. It is very important when the circuit 

implementation technology dictates strict constraints on the fan-out. Tab. 3 reports re-

sults for the advanced second method, which impressively reduces the IFD3 size but 

yields a logarithmic growth of the fan-out depending on the adder bit-width. 

Table 1 – Depth, size and fan-out of two IFDs of n-bit parallel adder 

Adder 

width 

n, bit 

High fan-out IFD1 (depth is 

2 + log n) 

Low constant fan-out IFD2 (depth 

is 2 log n) 

Dept

h 
Size 

Maximu

m fan-

out 

Avera

ge 

fan-

out 

Depth Size 

Maximu

m fan-

out 

Aver

age 

fan-

out 

8 5 33 6 1.69 6 35 4 1.69 

16 6 81 10 1.88 8 95 4 1.91 

32 7 193 18 1.99 10 243 4 2.04 

64 8 449 34 2.07 12 599 4 2.12 

128 9 1025 66 2.12 14 1435 4 2.19 

256 10 2305 130 2.17 16 3359 4 2.23 

512 11 5121 258 2.20 18 7715 4 2.27 

1024 12 11265 514 2.23 20 17447 4 2.29 

Table 2 – Comparison of high fan-out IFD1 to low fan-out IFD2 of n-bit parallel adder 

Adder 

width 

n, bit 

High fan-out IFD1 Low fan-out IFD2 

Depth, % Size, % 
Average fan-out, 

% 

Maximum fan-out, 

times 

8 20.0 6.1 0.00 1.5 

16 33.3 17.3 1.60 2.5 

32 42.9 25.9 2.51 4.5 

64 50.0 33.4 2.42 8.5 

128 55.6 40.0 3.30 16.5 

256 60.0 45.7 2.76 32.5 

512 63.6 50.7 3.18 64.5 

1024 66.7 54.9 2.69 128.5 

 

 



13 

Table 3 – Depth and size of a n-bit parallel adder IFD3 with logarithmic fan-out 

Adder width 

n, bit 

Logarithmic fan-out IFD3 (depth is 1 + 2 log n) 

Depth Size 
Maximum 

fan-out 
Average fan-out 

8 7 29 4 1.69 

16 9 69 5 1.80 

32 11 149 6 1.85 

64 13 309 7 1.88 

128 15 629 8 1.89 

256 17 1269 9 1.89 

512 19 2549 10 1.90 

1024 21 5109 11 1.90 

Conclusion. The paper has proposed a new method of the inference of parallel 

adder IFDs of logarithmic depth and low fan-out and has compared it to the alternative 

method proposed earlier. The main advantage of the new method is the obtaining of 

constant or logarithmic fan-out, which meets constraints raised by modern electronic, 

quantum and other implementation technologies. At 1024 bit-width, the constant fan-

out ща 4 is 128.5 times less that the fan-out given by the known method. The cost of 

such an improvement is the increase of the IFD’s depth (up to 66.7 %) and the increase 

of the IFD’s size (up to 54.9 %). 
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