
СЕКЦИЯ 2. Актуальные проблемы информационных технологий

и автоматизации 

99 

APPLICATION OF DYNAMIC PROGRAMMING TO THE ECONOMY 

А. Jovliev, J. Tulkinov 

National university of Uzbekistan named after Mirzo Ulugbek 

jovliyevabdulbosit@gmail.com 

It is no exaggeration to say that today programming and computer science 

have already penetrated into any field and have a strong place. Programming, 

which has penetrated into any area of the economy, and especially business, is 

still an important support for its development. While in the past the human brain 

took days to come up with a solution to this or that economic problem, today the 

computer is finding the optimal solution to such problems even in seconds. 

First of all, let's speak about what dynamic programming is. 

Dynamic programming is a process of solving a bigger problem by 

dividing  into several smaller problems (‗from particular to general‘ principle). 

In dynamic programming, we first consider the "backpack problem" algorithm. 

This algorithm works as follows: 

 A thief broke into the store. Her bag may contain m kg, and there are n

items in the store. The weight and price of these items are different.

Problem: We need to find the most expensive combination of items

that will fit in the bag.

If we approach the problem using the Greedy algorithm, we can say that 

the thief must take an expensive and baggy item, but this solution is not optimal. 

We need to look at the right solution in different combinations. 

For example, a thief has a 4-kilogram bag and 3 items that he can take. 

They are: a laptop weighing 3 kg, and pricing 2000$, a computer weighing 4 kg 

and pricing 3000 $.  Mini Macbook weighing 1kg and pricing 1500 $. We will 

consider combinations of these items. We put mark 1 to the item that the thief 

should take and a mark 0 to the item that the thief does not take. 

Notebook Computer Macbook Total weight Total profit 

($) 

0 0 0 0 kg 0 

0 0 1 1 kg 1500 

0 1 0 4 kg 3000 

0 1 1 5 kg 4500 

1 0 0 3 kg 2000 

1 0 1 4 kg 3500 

1 1 0 7 kg 5000 

1 1 1 8 kg 6500 

mailto:jovliyevabdulbosit@gmail.com


СЕКЦИЯ 2. Актуальные проблемы информационных технологий 

и автоматизации 

100 

Here we get their maximum profit value from rows weighing less than or 

equal to 4 kg, which means that when we get a Macbook with a laptop, we get 

the most expensive and optimal solution that fits in a bag. But we now have a 

relatively fast solution because of the small number of items in this algorithm, 

but as the number of items we have, the speed of taking that solution slows 

down. Because now we have to find 2^n  combinations. Here n - is the number 

of items. So far we have seen only 8 cases 〖 (2〗^3=8) for 3 different items.  

In this case, it is very convenient to use the algorithm "knapsack 

problem". In this case, we divide the problem into the following problems. Let‘s 

say we have one Macbook in the store and now we have 4 bags with a capacity 

of 1, 2, 3, 4 kg respectively. If a thief steals with a 1kg bag, he takes away an 

item worth $ 1,500, and if he steals with a 2kg bag, he takes away an item worth 

$ 1,500 because there is no other item in the store. Even if it is stolen with 

another similar bag, it will take away the same amount of items, i.e. with a 

maximum of $ 1,500 worth of items (s). 

Now, one more item has been added to the store: a computer. It weighs 4 

kg, if a thief enters to the store with a bag of 1 kg to steal, then he has to steal a 

Macbook from the store, because another item in the bag of 1 kg doesn‘t fit. As 

a result, the thief leaves the store with a $ 1,500 item, and if the thief goes with 

the remaining 2 and 3 kg bags, he will make a profit of $ 1,500. A $ 3,000-worth 

item will be taken out, where the optimal solution was $ 3,000. 

Now let's say a laptop is added to the store. Previously, the maximum 

profit for 3-kg-knapsack was $ 1,500, now it is $ 2,000, because a new item has 

been added to the store and it is more profitable for the thief to get it. Now the 

previous maximum profit for 4 kg was $ 3000, now if the thief takes the laptop 

and Macbook, he will take the item out of the store for $ 3500, for our case the 

2nd conclusion is better than the first, now with 4kg-knapsack, the thief can take 

an item of maximum of $ 3,500. 

In conclusion, we take the maximum values in each step and compare 

them with the maximum value in the next step, and we get the combination of 

which value is the largest. And now, we can create a table as follows. 

1-kg-

knapsack 

2-kg-

knapsack 

3-kg-

knapsack 

4-kg-

knapsack 

Macbook 1500 $ 1500 $ 1500 $ 1500 $ 

Computer 1500 $ 1500 $ 1500 $ 3000 $ 

Notebook 1500 $ 1500 $ 2000 $ 3500 $ 



СЕКЦИЯ 2. Актуальные проблемы информационных технологий 

и автоматизации 

101 

Nowadays, almost all problems are solved with the help of programming. 

We use the Python programming language to solve this problem, because it is 

the closest language to human understanding in programming languages and is 

widely used today for data analysis. We write a function with the following 

argument. 

1- weight of the item in the bag (type int), 2- weight of the item (type list), 

3- price of the item (type list), 4- number of items (type int), function name 

knapsack (W, wt, val, n). 

def knapSack(W, wt, val, n): 

    K = [[0 for x in range(W + 1)] for x in range(n + 1)] 

    # Build table K[][] in bottom up manner 

    selected=[2 for i in range(n+1)] 

    for i in range(n + 1): 

        for w in range(W + 1): 

    if i == 0 or w == 0: 

  K[i][w] = 0 

    elif wt[i - 1] <= w: 

  K[i][w] = max(val[i - 1] 

    + K[i - 1][w - wt[i - 1]], 

    K[i - 1][w]) 

  selected[i] = 1 

    else: 

  K[i][w] = K[i - 1][w] 

        selected[i] = 0 

    tempW = W 

    y = 0 

    x=n 

    for  i in range(x,0,-1): 

        if (tempW - wt[i - 1] >= 0) and (K[i][tempW] - K[i - 1][tempW - wt[i - 1]] 

== val[i - 1]): 

    selected[y] = i-1 

    y+=1 

    tempW -= wt[i-1] 

    for j in range(y-1,-1,-1): 

        print("industry index" , (selected[j] ) ,'profit',val[selected[j]]) 

    return f"total profit: {K[n][W]}" 

val = [1500 , 2000 , 3000] 

wt = [1 , 3 , 4 ] 

W = 4 



СЕКЦИЯ 2. Актуальные проблемы информационных технологий 

и автоматизации 

102 

n = 3 

print(knapSack(W, wt, val, n)) 

# result 

# industry index 0 profit 1500 

# industry index 1 profit 2000 

# total profit: 3500 

Using the function above, we determined that the optimal solution was $ 

3,500. So how do we use this algorithm in economics? 

Suppose we produce m_1, m_2, m_3,……m_n  units of products from n 

types of products with capital and labor resources, and let us make a profit of 

p_1  , p_2  , p_3  , … …p_n  from them, respectively. Now the volume of these 

products should not exceed W and it is necessary to get the maximum benefit. 

Here we can use the knapsack algorithm. 

So m_i   is the weight of the item, p_i  is the price of the item, W is the 

bag capacity, and n is the product type. 

val=[〖 p〗_1  , p_2  , p_3  , … …p_n]  , wt=[m_1  , m_2  , 

m_3,……m_n] 

Given the above information, we can make a plan of how to carry out 

production with maximum profit for production.  

Economic real-case problem 

An investor has 150 million soums. He wants to invest his money in any 

type of business. Naturally, the investor wants to invest in the industry or sectors 

where he can make the most profit and invest as much of his money as possible. 

Because the more money you have under your pillow, the more it loses value. 

The faster it rotates, the faster it benefits. 

So, the investor asked for advice from business consultants. The 

consultants suggested 12 different enterpreneurship: 

1) Opening of a bakery (invests 25 million, income 20 million per month);

2) Opening a sewing workshop (invests 45 million, income 25 million per

month); 

3) Production of dishes (Invests 32 million, income 24 million per

month); 

4) Production of towel (Invests 24 million, income14 million per month);

5) Production of stationery (invests  35 million, income 30 million per

month); 

6) Opening a grocery store (invests 32 million, income 30 million per

month); 



СЕКЦИЯ 2. Актуальные проблемы информационных технологий 

и автоматизации 

103 

7) Opening a fast food kitchen (invests 45 million, income 23 million per

month); 

8) Foam block production workshop (invests 30 million, income 25

million per month); 

9) Car service (invests 60 million, income 34 million per month);

10) Purchase and rent of 2 cars (invests 120 million, income 10 million

per month); 

11) Air conditioning and camera installation services (invests 15 million,

income 25 million per month); 

12) Opening a recording studio (invests 140 million, income 40 million

per month). 

Respectively, the consultants calculated how much each of these areas 

would cost and how much the investor would earn. Using this, we create the 

following (taking into account that here, the investment is a one-time, the total 

investment required to start a business. The income is considered stable and is 

the average monthly income). 

1- The amount of 150 million soums in the hands of the investor 

corresponds to the size of the bag in the example of the thief, which we 

first considered: 

2- Let's add the income values to a single list type variable: 

val = [20, 25, 24 , 14 , 30 ,30 , 23 , 25 , 34 , 10 ,25 ,40] 

we can think of it as the price of a stolen item 

3- Let's add the ivestment values to a single list of variables: 

wt = [25, 45, 32 , 24 , 35 , 32 ,45 , 30 ,60 , 120 ,15 , 140 ] 

we can compare this value with the weights of stolen items  

We consider 12 types of business as the number of items, and we use the 

above function as follows: 

knapSack(W, wt, val, n) 

def knapSack(W, wt, val, n): 

    K = [[0 for x in range(W + 1)] for x in range(n + 1)] 

    # Build table K[][] in bottom up manner 

    selected=[2 for i in range(n+1)] 

    for i in range(n + 1): 

        for w in range(W + 1): 

    if i == 0 or w == 0: 

        K[i][w] = 0 

    elif wt[i - 1] <= w: 

  K[i][w] = max(val[i - 1] 

    + K[i - 1][w - wt[i - 1]], 



СЕКЦИЯ 2. Актуальные проблемы информационных технологий 

и автоматизации 

104 

    K[i - 1][w]) 

  selected[i] = 1 

    else: 

  K[i][w] = K[i - 1][w] 

        selected[i] = 0 

    tempW = W 

    y = 0 

    x=n 

    for  i in range(x,0,-1): 

        if (tempW - wt[i - 1] >= 0) and (K[i][tempW] -     K[i - 1][tempW - wt[i - 

1]] == val[i - 1]): 

selected[y] = i-1 

    y+=1 

    tempW -= wt[i-1] 

    for j in range(y-1,-1,-1): 

        print("industry index" ,(selected[j] ), 'profit', 

val[selected[j]]) 

    return f"total profit: {K[n][W]}" 

val = [20, 25, 24 , 14 , 30 ,30 , 23 , 25 , 34 , 10 ,25 ,40] 

wt = [25, 45, 32 , 24 , 35 , 32 ,45 , 30 ,60 , 120 ,15 , 140 ] 

W = 150 

n = 12 

print(knapSack(W, wt, val, n)) 

The program gave us the following result: 

industry index 2 profit 24 

industry index 4 profit 30 

industry index 5 profit 30 

industry index 7 profit 25 

industry index 10 profit 25 

total profit: 134 

This means that investing in areas 3, 5, 6, 8, 8, 11 (indexing in 

programming is added to the indexes starting from 0) brings the greatest profit, 

and its maximum profit is 134 million. 

References 

1. S. Bollapragada and M. Garbiras. Scheduling commercials on

broadcast 

television. Operations Research, 52(3):337–345, 2004. 



СЕКЦИЯ 2. Актуальные проблемы информационных технологий 

и автоматизации 

105 

2. K. M. Bretthauer and B. Shetty. The nonlinear knapsack problem–

algorithms 

and applications. European Journal of Operational Research, 138(3):459–472, 

2002. 

3. F. Della Croce, F. Salassa, and R. Scatamacchia. A new exact

approach for the 0–1 collapsing knapsack problem. European Journal of 

Operational Research, 260(1):56–69, 2017. 

4. F. D´ıaz-N´u˜nez, N. Halman, and O. C. V´ ´ asquez. The TV

advertisements scheduling problem. Optimization Letters, 2018. 

doi:10.1007/s11590-018-1251-0. 

5. C. D‘Ambrosio, F. Furini, M. Monaci, and E. Traversi. On the product

knapsack problem. Optimization Letters, 2018. doi:10.1007/s11590-017-1227-5. 

6. A. Giudici, P. Halffmann, S. Ruzika, and C. Thielen. Approximation

schemes for the parametric knapsack problem. Information Processing Letters, 

120:11–15,  

7. H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack problems, 2004.

8. R. Lindsney and E. Verhoef. Traffic congestion and congestion pricing.

In Handbook of transport systems and traffic control, pages 77–105. Emerald 

Group Publishing Limited, 2001. 

10. D. Pisinger. The quadratic knapsack problem—a survey. Discrete

applied mathematics, 155(5):623–648, 2007. 

11. S. Pradhan. Retailing management: Text and cases. Tata McGraw-

Hill Education, 2009. 

12. G. Scheithauer. Knapsack problems. In Introduction to Cutting and

Packing Optimization, pages 19–45. Springer, 2018. 

13. J. P. Sousa and L. A. Wolsey. A time indexed formulation of non-

preemptive single machine scheduling problems. Mathematical programming, 

54(1): 353–367, 1992. 

RESEARCH AND DEVELOPMENT OF A CONTROL SYSTEM FOR 

THE SYNCHRONIZED MOVEMENT OF THE HEAD OF AN 

ANTHROPOMORPHIC ROBOT 

O.B. Hojiyev, Sh.B. Madaliev 

Teacher of Joint Belarusian-Uzbek Intersectoral Institute of Applied 

Technical Qualifications in Tashkent 

When considering the development trends of modern industrial robotics, 

special attention is drawn to a relatively new direction - collaborative assistant 

robots and telepresence systems that work in a common environment with a 


