УДК 621.382

ИНДЕНТИРОВАНИЕ ОБЛУЧЕННЫХ ЭЛЕКТРОНАМИ ПЛЕНОК ПОЗИТИВНЫХ НОВОЛАЧНЫХ ФОТОРЕЗИСТОВ НА КРЕМНИИ

Бринкевич Д.И.¹, Просолович В.С.¹, Черный В.В.², Вабищевич С.А.³, Вабищевич Н.В.³

¹Белорусский государственный университет ²Белорусский национальный технический университет Минск, Республика Беларусь ³Полоцкий государственный университет имени Евфросинии Полоцкой Новополоик, Республика Беларусь

Аннотация. Методом микроиндентировния исследованы прочностные и адгезионные свойства пленок диазохинон-новолачных позитивных фоторезистов S1813, SPR-700 и ФП9120 толщиной 1,2–1,8 мкм, облученных электронами с энергией 5 МэВ флюенсом 3[.]10¹⁶ см⁻². Показано, что при облучении микротвердость фоторезистивных пленк возрастает, причем наиболее существенно в SPR-700. Ключевые слова: диазохинонноволачный фоторезист, облучение электронами, микроиндентирование,

ключевые слова: диазохинонноволачный фоторезист, облучение электронами, микроиндентирование адгезия, кремний.

INDENTATION OF ELECTRON IRRADIATED POSITIVE NOVOLAC PHOTORESISTS FILMS ON SILICON

Brinkevich D.¹, Prosolovich V.¹, Chernyi V.², Vabishchevich S.³, Vabishchevich N.³

¹Belarusian State University Minsk ²Belarusian National Technical University Minsk, Republic of Belarus ³Euphrosyne Polotskaya State University of Polotsk Novopolotsk, Republic of Belarus

Abstract. The strength and adhesive properties of films of diazoquinone-novolac positive photoresists S1813, SPR-700 and FP9120 with a thickness of 1.2-1.8 microns irradiated with electrons with an energy of 5 MeV with a fluence of $3 \cdot 10^{16}$ cm⁻² were studied by microindentation. It is shown that under irradiation, the microhardness of photoresistive films increases, and most significantly in SPR-700.

Key words: diazoquinone-novolac photoresist, electron irradiation, microindentation, adhesion, silicon.

Адрес для переписки: Просолович В.С., пр. Независимости, 4, Минск 220030, Республика Беларусь e-mail: prosolovich@bsu.by

Современный технологический процесс получения изделий электроники основан на применении фотолитографии – метода формирования заданного рисунка на кремниевой подложке для получения необходимой топологии микросхем. В процессах субмикронной и нанолитографии в качестве фоторезистов (ФР) широко используются полимерные композиты на основе новолачной смолы [1]. Позитивные фоторезисты ФП9120, SPR-700 и S1813G2 SP15 являются аналогами по применению и оптимизированы под д-линию ртутной лампы. Они состоят из смеси фенолформальдегидных смол и светочувствительного нафтохинондиазида в соотношении 5:1 [2]. Одной из наиболее важных технологических характеристик фоторезистивных пленок является их адгезия к подложке монокристаллического кремния. Взаимодействие фоторезистов с ультрафиолетовым, рентгеновским и видимым излучением исследовано достаточно подробно, в то время как процессы, индуцированные электронным облучением, слабо изучены, несмотря на то, что они могут оказывать существенное влияние на качество создаваемых приборов.

Цель настоящей работы – исследование радиационно-индуцироанных процессов, протекающих при облучении электронами пленок диазохинон-новолачных фоторезистов ФП9120, SPR-700 и S1813 G2 SP15 на кремнии.

Материалы и методы измерений. Пленки позитивных диазохинон-новолачных фоторезистов марок ФП9120, SPR-700 и S1813 G2 SP15 толщиной 1,2–1,8 мкм наносились методом центрифугировани на поверхность пластин кремния с ориентацией (100) и (111). Перед формированием пленки ФР кремниевые пластины подвергали стандартному циклу обработки поверхности в органических и неорганических растворителях. После нанесения фоторезиста на рабочую сторону пластины проводилась сушка при температуре ~90 °C.

Облучение электронами с энергией 5 МэВ проводилось на линейном ускорителе электронов У-003 флюенсом $3 \cdot 10^{16}$ см⁻². Плотность потока электронов контролировалась с помощью цилиндра Фарадея и составляла $1 \cdot 10^{12}$ см⁻²с⁻¹. Температура образцов в процессе облучения не превышала 310 К.

Микроиндентирование проводилось на приборе ПМТ-3 по стандартной методике [3]. Нагрузка (*P*) на индентор варьировалась в пределах 1–50 г. Длительность нагружения составляла 2 с; выдержка под нагрузкой 5 с. Погрешность измерений микротвердости (*H*) составляла 2,5 % (с доверительной вероятностью 0,95).

Эксперимент. Отпечатки микроиндентора в пленках в пленках всех марок фоторезиста имели бочковидную форму (рис. 1, *a*), что свидетельствует о наличии растягивающих напряжений, формирующихся при сушке пленки. Параллельно сторонам отпечатка наблюдались навалы (светлые области на рис. 1, *a*), обусловленные выдавливанием материала из-под индентора.

При минимальной нагрузке 1 г часть (от 40 % в ФП9120 до 85 % в S1813) отпечатков после снятия нагрузки частично или полностью восстанавливались, уменьшаясь в размерах или полностью исчезая. Однако уже при нагрузке 5 г эффект восстановления отпечатка не наблюдался. На нагрузках более 5 г вокруг отпечатков имела место зона разрушения, в которой наблюдались радиальные и боковые трещины, а также отслоения пленки от подложки в виде «бабочек» (рис. 1, б). Для ряда отпечаков на пленках SPR-700 при нагрузках 10-50 г наблюдался отрыв пленки от подложки при индентировании. При этом в области отпечатка обнажалась кремниевая подложка, что свидетельствовало о слабой адгезии фоторезиста SPR-700. В фоторезистивных пленках других марок таких отрывов практически не наблюдалось. Отметим, что при увеличении толщины пленки SPR-700 до 1,8 мкм размеры зоны разрушения существенно (на ~ 30 %) снижаются.

Зависимости микротвердости от нагрузки всех фоторезистов схожи (рис. 2). Расхождения при нагрузках > 10 г, когда индентор проникает в Si подложку, обусловлены, вероятнее всего, более низкой адгезией фоторезистов S1813 и SPR-700 по сравнению с ФП9120. Подтверждением сделанного вывода является то, что у отпечатков индентора в пленках S1813 и SPR-700 наблюдались отколы, отсутствующие в ФП9120.

Рисунок 2 – Зависимости от нагрузки микротвердостей фоторезистивных пленок ФП9120 (1), S1813 (2) и SPR-700 толщиной 1,2 мкм (3) и 1,8 мкм (4)

Облучение 5 МэВ электронами приводило к увеличению значений микротвердости при нагрузке 1 г (табл. 1). При этой нагрузке глубина проникновения индентора составляла ~0,9 мкм. Поэтому эти значения соотвествуют истинной микротвердости полимерной пленки. Т.о. при облучении микротвердость ФР возрастает, причем наиболее существенно (почти в 3 раза) в SPR-700 толщиной 1,8 мкм. При нагрузках свыше 20 г, когда основной вклад дает кремниевая подложка, существенной зависимости микротвердости от дозы облучения выявлено не было. Полученные результаты коррелируют с данными [4], в которой показано, что у-облучение приводит к увеличению микротвердости пленок сополимеов метилметакрилата и метакриламида на кремнии.

Таблица 1. Микротвердость (ГПа) облученных пленок фоторезиста при нагрузке 2 г

Марка ФР	исходный	облученный
ФП9120	0,21	0,34
SPR 700 1,2 мкм	0,15	0,35
SPR 700 1,8 мкм	0,14	0,40
S1813 G2 SP15	0,23	0,41

Литература

1. Моро, У. Микролитография. Принципы, методы, материалы. В 2-х ч. Ч. 2. / У. Моро. – М.: Мир, 1990. – 632 с.

2. Brinkevich, S. D. Frustrated total internal reflection spectra of diazoquinone–novolac photoresist / S. D. Brinkevich [et al.] // Journal of Applied Spectroscopy. – 2021. – V. 87, № 6 – P. 1072–1078.

 Прочностные свойства структур фоторезисткремний, γ-облученных и имплантированных ионами B⁺ и P⁺/ C. А.Вабищевич [и др.] // Вестник Полоцкого государственного университета. – 2016. – № 12. – С. 51–57.

4. Микротвердостыпленок сополимеров на основе метилметакрилата, облученных γ-квантами / С. А. Вабищевич [и др.] // Вестник Полоцкого государственного университета. – 2016. – № 12. – С. 30–36.