Стабильность вычисляется по формуле (2)

$$S = 100\% * \frac{\sum_{j=1}^{S} \sum_{i=1}^{N-1} x_{ji} \text{ sor } x_{j(i-1)}}{N*S}.$$
 (2)

где N – количество экспериментов; S – количество ячеек; x_{ji} – значение *j*-той ячейки в *i*-том эксперименте.

В результате проведенного сравнения мы пришли к следующему выводу: реальные образцы статической памяти обладают меньшей стабильностью ячеек, чем эмуляция на ПЛИС, но при этом дают возможность получить соотношение нулей и единиц, близкое к идеальному.

Благодарности. Авторы выражают благодарность резиденту парка высоких технологий РБ SK Hynix memory solutions Eastern Europe за предоставленное оборудование для проведения экспериментов.

Литература

 Заливако, С. С. Обзор методов активной идентификации цифровых устройств / С. С. Заливако, А. А. Иванюк // Информатика. – 2016. – №3. – С. 38–47.

2. Tehranipoor, M. Counterfeit Integrated Circuits. Detection and Avoidance / M.Tehrainipoor, U. Guin, D. Forte. – Switzerland: Springer International Publishing, 2015. – 269 p.

3. Pappu, R. Physical One-Way Functions: Ph.D. thesis / R. Pappu // MIT. – Boston, USA, 2001.

4. Physical one-way functions / R. Pappu [et al.] // Science. – 2002. – Vol. 297, № 5589. – P. 2026–2030.

УДК 531.383

ВОЛНОВОЙ ТВЕРДОТЕЛЬНЫЙ ГИРОСКОП С МЕТАЛЛИЧЕСКИМ РЕЗОНАТОРОМ, РАБОТАЮЩИЙ В РЕЖИМЕ СВОБОДНОЙ ВОЛНЫ Каликанов А.В., Стрельцов Д.С., Матвеев В.В., Лихошерст В.В., Погорелов М.Г.

ФГБОУ «Тульский государственный университет» Тула, Российская Федерация

Аннотация: В работе представлены результаты исследования волнового твердотельного гироскопа с металлическим резонатором на подвижном основании, работающем в режиме свободной волны, показана возможность определения углового положения.

Ключевые слова: волновой твердотельный гироскоп, свободная волна, металлический резонатор, датчик угла.

WAVE SOLID STATE GYRO WITH METAL CAVITY OPERATING IN FREE WAVE MODE Kalikanov A., Streltsov D. Matveev V. Likhosherst V. Pogorelov M.

Tula State University Tula, Russian Federation

Abstract: As a result of the studies of a wave solid-state gyroscope with a metal resonator on a movable base operating in the free wave mode, the possibility of determining the angular position was found. **Key words:** wave solid-state gyroscope, free wave, metal resonator, angle sensor.

Адрес для переписки: Каликанов А.В., пр. Ленина, 95, Тула 300012, Российская Федерация e-mail: kalikanov.aleksei@mail.ru

Как известно, существуют две основные схемы построения волнового твердотельного гироскопа (ВТГ): измеритель угла поворота (ВТГ-ИГ) и измеритель угловой скорости вращения (ВТГ-ДУС). В ВТГ-ИГ используется инерционное свойство стоячей волны и оценивается угол поворота основания, на котором установлен гироскоп, относительно положения волны через коэффициент пересчета (коэффициент Брайана). В ВТГ-ДУС реализуется удержание стоячей волны относительно корпуса гироскопа, а вторичная волна, возникающая при вращении основания, подавляется (компенсируется). Сила компенсации содержит информацию об угловой скорости вращения основания [1].

В настоящие время существует необходимость в создании ВТГ-ИГ среднего класса точности для применения в качестве датчика угловых перемещений для беспилотного летательного аппарата, при этом ВТГ должен измерять не угловую скорость, а угол поворота основания. Для создания ВТГ в режиме датчика угловых перемещений необходимым условием является, чтобы стоячая волна, возбуждаемая в цилиндрической оболочке, не была бы «привязана» к основанию прибора, а существовала в резонаторе «свободно». В этом случае ВТГ можно уподобить маятнику Фуко, позволяющего фиксировать угол поворота основания.

В режиме свободной волны (рис. 1) в начальный промежуток времени с генератора синусоидальных сигналов на диаметрально противоположные пьезоэлементы I–I подается сигнал в виде синусоидального напряжения $Asin(\omega t)$, где A – амплитуда, ω – частота подачи переменного сигнала, равная (или близкая) к собственной частоте основной формы колебаний металлического цилиндрического резонатора. В следствие изгибных деформаций дна металлического цилиндрического резонатора возникает изгибающий момент, который вызывает эллиптические деформации на второй форме колебаний, в результате чего возбуждается стоячая волна с четырьмя областями, ориентированными вдоль пары пьезоэлементов I-I и II-II и четырьмя областями, расположенными вдоль пары пьезоэлементов III-III и IV-IV.

1 – резонатор; 2 – дно резонатора с парами пьезоэлементов; 3 – генератор; 4 – демодулятор

Рисунок 1 – ВТГ (режим свободной волны)

Через одну секунду после подачи управляющего сигнала генератор отключается и ВТГ приходит в рабочее состояние. При вращении колеблющегося металлического цилиндрического резонатора вокруг его оси симметрии, обусловленного поворотом на угол подвижного объекта, с постоянной угловой скоростью возникают Кориолисовые силы инерции, привязанные к запаздыванию стоячей волны. Полученный сигнал с первого контура и второго контура, сдвинутый по фазе на минус 90 градусов поступает в демодулятор, где осуществляется демодуляция сигналов и вычисление угла на основе соотношения

$$\alpha = \frac{1}{2K} = \operatorname{arctg}(\frac{Y}{X}) \tag{1}$$

где α – вычисляемый угол; K – коэффициент прецессии волны коэффициент Брайана); Y – сигнал в узле, X – сигнал в пучности.

На кафедре «Приборы управления» Тульского государственного университета были проведены исследования на экспериментальном образце ВТГ с металлическим резонатором работающем в режиме «свободной волны» с целью подтверждения возможности вычисления углового положения.

Экспериментальный образец ВТГ с металлическим цилиндрическим резонатором был закреплен на поворотной платформе аттестованного одноосного стенде ACUITAS AG MODEL TES-V 3-4 ТМ оснащенном климатической камерой. После чего была проведена серия экспериментов при вращении основания на фиксированные углы. На рис. 1 приведены траектории, прочерчиваемые совершающей одновременно точкой, лва гармонических колебания в двух взаимно перпендикулярных направлениях (сигналы в узле и пучности) – так называемая фигура Лиссажу, которая имеет форму эллипса в следствии наличия квадратурной составляющей.

Рисунок 1 – Фигуры Лиссажу в координатах X – Y

Для вычисления текущего угла поворота необходимо найти точки соответствующие максимальной амплитуде в узле (координата X) и максимальной амплитуде в пучности (координата Y) и выполнить вычисление по формуле (1). При повороте основания на угол 50 градусов, вычислим поворот эллипса, приняв коэффициент Брайана K = 0.7. получим $\alpha = 49,565$ градусов. Что подтверждает возможность построения датчика перемещений на базе ВТГ с металлическим резонатором, работающим в режиме свободной волны. Но основная проблема использования ВТГ с металлическим резонатором в режиме «свободной волны» обусловлена низкой добротностью металлической оболочки, которая обычно не превышает 35000 [2]. На кафедре «Приборы управления» Тульского государственного университета в настоящие время ведется активная работа по реализации схемотехнического способа увеличения добротности ВТГ с металлическим резонатором для увеличения времени функционирования в режиме свободной волны.

Благодарности. Работа выполнена при финансовой поддержке Министерства науки и высшего образования РФ в рамках государственного задания по теме «Развитие теории инерциальных датчиков первичной информации для навигационных систем высокоманевренных летательных аппаратов (FEWG-2022-0002)».

Литература

1. Волновой твердотельный гироскоп с металлическим резонатором / Распопов В. Я. [и др.]. – Под ред. В. Я. Распопова. – Тула: Издательство ТулГУ, 2018. – 189 с.

2. Lynch, D. D. Coriolis vibratory gyroscope / D. D. Lynch // Coriolis vibratory gyroscope / IEEE standard specification IEEE standard specification format guide and test procedure for Coriolis vibratory gyros. IEEE std.1431 annex B. 2004. P. 56–66.