
DATA PROCESSING AND DECISION-MAKING 57

3, 2022 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

UDC 004.272.2
DOI: 10.21122/2309-4923-2022-3-57-65

O. N. KARASIK O. N., A. A. PRIHOZHY

TUNING BLOCK-PARALLEL ALL-PAIRS SHORTEST PATH ALGORITHM FOR
EFFICIENT MULTI-CORE IMPLEMENTATION

Belarusian National Technical University

 Finding shortest paths in a weighted graph is one of the key problems in computer-science, which has numerous
practical applications in multiple domains. This paper analyzes the parallel blocked all-pairs shortest path algorithm at the
aim of evaluating the influence of the multi-core system and its hierarchical cache memory on the parameters of algorithm
implementation depending on the size of the graph and the size of distance matrix’s block. It proposes a technique of tuning the
block-size to the given multi-core system. The technique involves profiling tools in the tuning process and allows the increase of
the parallel algorithm throughput. Computational experiments carried out on a rack server equipped with two Intel Xeon E5-2620
v4 processors of 8 cores and 16 hardware threads each have convincingly shown for various graph sizes that the behavior and
parameters of the hierarchical cache memory operation don’t depend on the graph size and are determined only by the distance
matrix’s block size. To tune the algorithm to the target multi-core system, the preferable block size can be found once for the graph
size whose in-memory matrix representation is larger than the size of cache shared among all processor’s cores. Then this block-
size can be reused on graphs of bigger size for efficient solving the all-pairs shortest path problem.
 Keywords: shortest path; Floyd-Warshall algorithm; blocked algorithm; multithreaded application; multi-core system;
hierarchical cache memory; parallelism; throughput.

 Introduction

The problem of finding a shortest path
exists for ages. It has a long history of being
deeply investigated by different researchers to
solve various practical problems, starting from
solving mazes and ending by optimization of
networks [1,2]. The shortest path problem has two
formulations: finding a shortest path between a
source and each other vertex in a weighted graph
(Single Source Shortest Path – SSSP) and finding
shortest paths between all pairs of vertices (All
Pairs Shortest Path – APSP). Dijkstra’s algorithm
solves SSSP and has a O(n2) computational
complexity. Floyd-Warshall’s algorithm solves
APSP and has O(n3) computational complexity.
Both problems are computationally expensive for
large graphs. On graph of over 10000 vertices the
algorithms require impractical amount of time,
even on modern hardware. That is why, effective
parallelization of the algorithms on multi-core
systems is an important computational problem.

The algorithm parallelization requires
highly qualified professionals [3] to adapt
algorithm’s mechanics and implement it in a way
to meet features of the target machine, which is a
separate challenge due to the increasing number
of cores and their architectural differences [4].
The effective algorithm parallelization depends
on multiple factors including (but not limited
to) the distribution of worker threads between
processor’s cores [5,6] and optimization of
hierarchical cache memory usage [7].

In this paper we are focusing on

analyzing the block-parallel APSP algorithm
and tuning it with respect to the graph and
block sizes to account for the multi-core system
architecture and its hierarchical cache memory
with the objective of increasing the algorithm
implementation throughput.

Block-parallel shortest paths algorithm

The Floyd-Warshall algorithm [8] ope-
rates on a cost adjacency matrix D[N × N], where
N is a number of vertices in a graph. The matrix
is initialized with weights of the edges in such
a way that element Dij contains a weight of the
edge between vertices i and j (upon completion,
element Dij will contain a length of the shortest
path between the vertices). When an edge is
absent the value of Dij is ∞. The algorithm
recalculates all elements of D within each of N
iterations of a loop along the graph vertices.

The authors of [9] proposed a blocked
(also known as “tiled”) version of the Floyd-
Warshall algorithm. This version splits matrix
D into blocks of size S × S, effectively creating
a matrix B[M × M] of blocks, where equality
M ∙ S=N holds. It performs M iterations, each
consisting of three phases (see Figure 1) of
calculating the “diagonal” block (depends on
itself), 2 ∙ (M-1) ”cross” blocks (each depends on
itself and the corresponding “diagonal” block),
and (M-1)2 “peripheral” blocks (each depends
on the corresponding vertical and horizontal
“cross” blocks.

58 ОБРАБОТКА ИНФОРМАЦИИ И ПРИНЯТИЕ РЕШЕНИЙ

CИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА 3, 2022

In [10–13], the authors shown that
the blocked Floyd-Warshall algorithm can
be parallelized due to all “cross” blocks
are calculated mutually in parallel and all
“peripheral” blocks are calculated mutually
in parallel too. The “diagonal”, “cross” and
“peripheral” blocks are calculated sequentially.
Algorithm 1 describes the resulting block-
parallel Floyd–Warshall algorithm by means of
OpenMP facilities.

It should be noted that the order of
block calculation within a loop iteration
along m doesn’t have to match the above-
described calculation phases. Instead, it can
be purely driven by the data dependencies
among blocks [14–17]. Des-pite differences
in data dependencies, which potentially can be
exploited [18], all blocks are calculated using
the same procedure (see Algorithm 2).

Problem formulation

Although the computational complexity
of both the basic and blocked Floyd-Warshall
algorithms is the same, the blocked algorithm
contrary to the basic one obtains a property
of spatial locality, which is very important
regarding the reduction of multiple data
transfers between fast and slow memory levels
in a multi-core system.

In the basic Floyd-Warshall algorithm,
matrix D is allocated in row-major style in
main memory. For large graphs, the matrix size
exceeds the last level cache (LLC) size, which
leads to a significant memory traffic because
the algorithm reads (and

Figure 1. Illustration of calculation phases of block-parallel Floyd-Warshall algorithm on first two itera-
tions (steps)

DATA PROCESSING AND DECISION-MAKING 59

3, 2022 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

probably writes) every element of D within
every iteration. This may cause a complete
or partial reload of the matrix from the main
memory in each iteration and may lead to pore
performance.
The blocked Floyd-Warshall algorithm performs
computations over blocks, with at most three
active blocks at a time. Due to spatial locality,
it can improve the performance on both small
(when D doesn’t’ fit in L1 processor cache) and
large (when D doesn’t fit in LLC) graphs.
In [7], the authors shown that on state-of-the-
art processors of that time the algorithm can
reduce the process-memory traffic by a factor
of S. In [9], to minimize L1 cache misses the
authors proposed to choose the size S of block
which meets the following inequality:

3∙ E ∙ S2 ≤ C
(1)

where E is the size of matrix element and C is the
size of L1 cache. The proposed approach works
for serial implementations of the algorithm.
Nowadays, the situation has changed with
respect to finding the matrix block size as the
size of processed graphs has grown, modern
computing systems have many levels of
hierarchical memory, each level’s volume
can vary from one processor to another, and
the number of cores and their parallelization
potential has increased. New techniques of
searching for an optimal (or preferable) size
of block of large-size matrices have to be
developed.
In this work we develop a multicore-system
profiler-based technique [17,19,20] to analyze
the parallel operation of cores within one
processor and the behavior of many-level
cache memory to tune the size of block in the
block-parallel all-pairs shortest path algorithm
with the aim of increasing the implementation
throughput.

Algorithm profiling on multi-core system

To understand the dependence of the
algorithm execution time on the multi-core
system architecture and the organization of
its hierarchical cache memory we used the
Intel VTune Profiler 2021.8. The profiler
has facilities to measure the following PMU
(Performance Monitor Unit) MEM_LOAD_

UOPS_RETIRED events:
 • L1_HIT_PS – indicates L1 hit.
 •cL2_HIT_PS – indicates L2 hit (also
means L1 miss)
 • L3_HIT_PS – indicates L3 hit (also
means L2 miss)
 • L3_MISS_PS – indicates L3 miss and
access to RAM.
These events as well as the execution time
were collected all at once without multiplexing
[19] on every run of the algorithm. In all
experimental results, the value of each event is
a sum of all such events recorded on all cores
and processors during a sample interval [20].
In the paper, we report results obtained on a
rack server equipped with two Intel Xeon E5-
2620 v4 processors containing 8 cores and 16
hardware threads each. Every core is equipped
with a private L1 (32 KB) and L2 (256 KB)
caches, and all processor cores share inclusive
L3 (20 MB) cache. Table 1 reports the cache
latencies. Similar profiling results were
obtained on other processors. The algorithm
was implemented in C++ language using GNU
GCC compiler v10.2.0 and parallelized by
means of OpenMP 4.5.

We conducted a series of experiments on
randomly generated directed graphs. Here we
report results for graphs of 4800, 9600 and
19200 vertices. It should be noted that the
matrix D size representing a graph of 4800
vertices is already larger than the L3 cache size.
Every experiment was repeated multiple times
and the results of computation were verified.
To ensure that the VTune profiler doesn’t
introduce significant noise, the execution time
was measured with and without the profiler
attached.
All experiments were conducted on block
sizes as follows: 30x30, 48x48, 50x50, 75x75,
100x100, 120x120, 150x150, 160x160,
192x192, 200x200, 240x240 and 300x300. All
block-sizes divide the matrix into blocks of
equal size without remainders.

Table 1. Sizes and approximate latencies of L1, L2
and L3 caches for Intel Xeon E5-2620 v4 processor

60 ОБРАБОТКА ИНФОРМАЦИИ И ПРИНЯТИЕ РЕШЕНИЙ

CИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА 3, 2022

Results of algorithm profiling

Tables 3, 4, and 5 report the block-parallel
algorithm execution time and the number of
L1, L2, L3 and main memory hits obtained as
an average of 10 runs with the VTune profiler
attached. “Break points” (block sizes where
the algorithm no longer efficiently uses current
level of cache and starts to rely on the next
level) represented by → are the most interesting
information in the tables. For instance, the
block-size of 75x75 is a “break-point” because
three blocks of the size don’t fit in L1 cache
(see Table 2), therefore the algorithm starts to
more extensively use L2 cache. The number of
L1 cache hits is getting lower and the number of
L2 cache hits increases significantly (around 5
times). The number of L3 hits reduces around 2
times and L3 miss around 3 times, which means
less L2 misses. We can also see a stabilization
of the number of L1 cache hits on larger block

sizes (from 100 to 300). The standard deviation
over 10 runs of the algorithm is on average
1.23% for L1 hits for block sizes 100 – 300
on 4800 vertices of graph, is 1.55% on 9600
vertices and 1.93% on 19200 vertices.
The block size of 150x150 is the second “break
point” (between L2 and L3 caches) where the
number of L2 cache hits is reduced (around 1.5
times) and the number of L3 hits is significantly
increased (around 2.5 times). Then the number
of L2 hits continuously grows, the number of L3
hits temporary grows (with changing to gradual
reduction after the block size of 192x192) and
the number of L3 miss continuously reduces.
The increase of L2 hits is caused by the fact that
L1 cache can’t hold even a fraction of block
(for instance, the L1 cache contains only 1/3 of
a block of 160x160 size). The behavior of L3
cache is associated with the adaptation of L2
cache to the

Table 2. Number of blocks fit in each level of cache vs. block size

Table 3. Event count vs. block size for block-parallel algorithm on a graph of 4800 vertices; profiler con-
tribution is up to 1.70%; arrow (→) represents “break point”; bold indicates maximum number of events;

filled cell indicates minimal execution time.

Table 4. Event count vs. block size for block-parallel algorithm on graph of 9600 vertices; profiler contri-
bution is up to 1.54%.

DATA PROCESSING AND DECISION-MAKING 61

3, 2022 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

Table 5. Event count vs. block size for block-parallel algorithm on graph of 19200 vertices; profiler con-
tribution is up to 1.74%.

Table 6. Caches and main memory hits in percent over the total number of events (L1 + L2 + L3 hits +
L3 miss) for graph of 4800 vertices vs. block size

Table 7. Hits of L1, L2 and L3 cahes in percent over the cache related events for graph of 4800 vertices
vs. block size

situation when it can’t fit three blocks, then
two blocks, and in the end a single block.
The continuously reduction of L3 misses is
explained by the fact that with increasing the
block-size almost all requests are served by L2
or L3 caches (see Table 2).
Table depicts shares in percent of the cache hits
and misses vs. block size for the graph-size of
4800 vertices. L1 cache processes from 99.37 %

down to 97.87 % of data requests depending on
the block-size. The L2 and L3 caches process
much less requests. Table 7 shows that the less
share of requests to L2 cache is processed at the
L2 level against L1 cache. The same concerns
L3 cache. The number of requests to the main
memory falls with the block-size growth.
Shares for graphs of 9600 and 19200 vertices
are close to those of graph of 4800 vertices.

62 ОБРАБОТКА ИНФОРМАЦИИ И ПРИНЯТИЕ РЕШЕНИЙ

CИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА 3, 2022

Figure 2. Normalized maximum count (bold figures in Tables 3-5) of a) L1 hits b) L2 hits c) L3 hits and d) L3
misses across graphs of 4800 (solid), 9600 (dashed) and 19200 (dashed dotted) vertices vs. block-size

 The results obtained on two Intel Xeon
E5-2620 v4 processors (see Figure 2) and one Intel
Core i5-6200U clearly demonstrate that the cache
usage by the algorithm depends mainly on the block
size and almost doesn’t depend on the graph size.
Moreover, the maximum values for L1, L2, L3 hits
and L3 miss shown in bold in Tables 3–5 correspond
to the same block sizes for all of the graphs. Figure
3 shows that the changes in execution time follow

the pattern that is similar to one of the cache usages:
they get increased or reduced in the same manner.
It is important to understand why after reaching the
block size of 120x120 the execution time continues
to increase while the L3 misses decrease and L2 and
L3 hits increase. An explanation can be seen in the
latencies of the L1, L2 and L3 cache levels depicted
in Table 1.

Figure 3. Normalized minimum execution time from Tables 3–5 for graphs of 4800 (solid), 9600 (dashed) and
19200 (dashed dotted) vertices

Block-parallel algorithm tuning technique

 Now we can formulate the block-parallel
algorithm tuning technique targeting the shortest
paths problem on large graph and increasing the
throughput of the multi-core systems. The technique
consists of the steps as follows:
 1. Studying the features of structure and
parameters of the multi-core system.
 2. Attaching a multi-core system profiler to
the algorithm program code.
 3. Selecting or generating a weighted graph
which in-memory matrix representation is larger
than the last level cache size.
 4. Profiling the algorithm on the graph for
various block size.
 5. Finding the block-size giving a minimum
of algorithm execution time.
 6. Solving the shortest paths problem on
larger graphs with high throughput using the block-
size determined on step 5.

Conclusion

 The Floyd-Warshall block-parallel all-pairs
shortest path algorithm requires a tuning of the block-
size to modern multi-core system architectures at
the aim of increasing throughput. The main result
of the paper is the proposed technique of finding an
optimal (preferable) block size experimentally on
a smaller graph by means of a multi-core system
profiler and then using the found block-size for
multiple solving with higher throughput the shortest
paths problem on large graphs. To obtain the result
we have analysed the hierarchical cache memory
usage by the algorithm and have demonstrated
that it doesn’t depend on the graph size but instead
depends on the selected block size. We have also
experimentally demonstrated that the optimal
block size is no longer can be found in the same
way as it was done for the sequential algorithm,
therefore, leaving discovery of optimal block size
to experimental lookup and future research.

DATA PROCESSING AND DECISION-MAKING 63

2, 2022 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

ЛИТЕРАТУРА
1. Schrijver, A. On the history of the shortest path problem / A. Schrijver // Documenta Mathematica. – 2012. – Vol. 17,

№. 1. – P. 155–167.
2. Anu, P. Finding All-Pairs Shortest Path for a Large-Scale Transportation Network Using Parallel Floyd-Warshall and

Parallel Dijkstra Algorithms / P. Anu, M. G. (Kumar) // Journal of Computing in Civil Engineering. – 2013. – Vol. 27, №. 3. – P.
263–273.

3. Atachiants, R. Parallel Performance Problems on Shared-Memory Multicore Systems: Taxonomy and Observation /
R. Atachiants, G. Doherty, D. Gregg // IEEE Transactions on Software Engineering. – 2016. – Vol. 42, №. 8. – P. 764–785.

4. Zheng, Y. Performance evaluation of exclusive cache hierarchies / Y. Zheng, B. T. Davis, M. Jordan. – 2004. – P.
89–96.

5. Прихожий А.А., Карасик О.Н. Исследование методов реализации многопоточных приложений на
многоядерных системах // Информатизация образования, 2014, № 1, с. 43–62.

6. Прихожий А.А., Карасик О.Н. Кооперативная модель оптимизации выполнения потоков на многоядерной
системе // Системный анализ и прикладная информатика, 2014, № 4, с. 13–20.

7. Park, J. Optimizing graph algorithms for improved cache performance / J. Park, M. Penner, V. K. Prasanna // IEEE
Transactions on Parallel and Distributed Systems. – 2004. – Vol. 15, №. 9. – P. 769–782.

8. Floyd, R. W. Algorithm 97: Shortest Path / R. W. Floyd // Communications of the ACM. – 1962. – Vol. 5, №. 6. – P.
345-.

9. Venkataraman, G. A. Blocked All-Pairs Shortest Paths Algorithm / G. Venkataraman, S. Sahni, S. Mukhopadhyaya
// Journal of Experimental Algorithmics (JEA). – 2003. – Vol. 8. – P. 857–874.

10. Albalwi, E. Task Level Parallelization of All Pair Shortest Path Algorithm in OpenMP 3.0 / E. Albalwi, P.
Thulasiraman, R. Thulasiram // Advances in Computer Science and Engineering (CSE 2013), Los Angeles. – Los Angeles: Atlantis
Press, 2013. – P. 109–112.

11. Tang, P. Rapid development of parallel blocked all-pairs shortest paths code for multi-core computers / P. Tang //
IEEE SOUTHEASTCON 2014, Lexington, KY, USA. – Lexington, KY, USA: IEEE, 2014. – P. 1–7.

12. Singh, A. Performance Analysis of Floyd Warshall Algorithm vs Rectangular Algorithm / A. Singh, P. K. Mishra //
International Journal of Computer Applications. – 2014. – Vol. 107, №. 16. – P. 23–27.

13. An Experimental Study of a Parallel Shortest Path Algorithm for Solving Large-Scale Graph Instances / K. Madduri
[et al.] // 2007 Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments (ALENEX). – Society for Industrial
and Applied Mathematics, 2007. – P. 23–35.

14. Карасик, О. Н. Кооперативный многопоточный планировщик и блочно-параллельные алгоритмы
решения задач на многоядерных системах / О. Н. Карасик. – Белорусский государственный университет информатики и
радиоэлектроники, 2019.

15. Карасик, О. Н. Потоковый блочно-параллельный алгоритм поиска кратчайших путей на графе / О. Н.
Карасик, А. А. Прихожий // Доклады БГУИР. – 2018. – №. 2. – С. 77–84.

16. Прыхожы, А. А. Кааператыўныя блочна-паралельныя алгарытмы рашэння задач на шмат’ядравых сістэмах
/ А. А. Прыхожы, А. М. Карасік // Сістэмны аналіз і прыкладная інфарматыка. – 2015. – №. 2. – С. 10–18.

17. Прихожий, А.А. Моделирование кэш прямого отображениея и ассоциативных кэш на алгоритмах поиска
кратчайших путей на графе / А.А. Прихожий // Системный анализ и прикладная информатика. – 2019. – No. 4. – С. 10–18.

18. Prihozhy, А. Inference of shortest path algorithms with spatial and temporal locality for Big Data processing / А.
Prihozhy, O. Karasik // Big Data and Advanced Analytics: сб. материалов VIII Междунар. науч.-практ. конф., Минск, 11-12
мая 2022. – Минск: Беспринт, 2022. – P. 56–66.

19. Intel Corporation. Allow Multiple Runs or Multiplex Events [Electronic resource]. – Mode of access: URL: https://
www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/hw-event-based-sampling-
collection/allow-multiple-runs-or-multiplex-events.html. – Date of access: 07.03.2022.

20. Intel Corporation. Hardware Event-based Sampling Collection [Electronic resource]. – Mode of access: URL: https://
www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/hw-event-based-sampling-
collection.html – Date of access: 07.03.2022).

REFERENCES
1. Schrijver, A. On the history of the shortest path problem / A. Schrijver // Documenta Mathematica. – 2012. – Vol. 17,

№. 1. – P. 155–167.
2. Anu, P. Finding All-Pairs Shortest Path for a Large-Scale Transportation Network Using Parallel Floyd-Warshall and

Parallel Dijkstra Algorithms / P. Anu, M. G. (Kumar) // Journal of Computing in Civil Engineering. – 2013. – Vol. 27, №. 3. – P.
263–273.

3. Atachiants, R. Parallel Performance Problems on Shared-Memory Multicore Systems: Taxonomy and Observation /
R. Atachiants, G. Doherty, D. Gregg // IEEE Transactions on Software Engineering. – 2016. – Vol. 42, №. 8. – P. 764–785.

4. Zheng, Y. Performance evaluation of exclusive cache hierarchies / Y. Zheng, B. T. Davis, M. Jordan. – 2004. – P.
89–96.

64 ОБРАБОТКА ИНФОРМАЦИИ И ПРИНЯТИЕ РЕШЕНИЙ

CИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА 2, 2022

5. Prihozhy, A.A. Investigation of methods for implementing multithreaded applications on multicore systems / A.A.
Prihozhy, O.N. Karasik // Informatization of education. – 2014. – No. 1. – P. 43–62.

6. Prihozhy, A.A. Cooperative model for optimization of execution of threads on multi-core system / A.A. Prihozhy,
O.N. Karasik // System analysis and applied information science. – 2014. – No. 4. – P. 13–20.

7. Park, J. Optimizing graph algorithms for improved cache performance / J. Park, M. Penner, V. K. Prasanna // IEEE
Transactions on Parallel and Distributed Systems. – 2004. – Vol. 15, №. 9. – P. 769–782.

8. Floyd, R. W. Algorithm 97: Shortest Path / R. W. Floyd // Communications of the ACM. – 1962. – Vol. 5, №. 6. – P.
345-.

9. Venkataraman, G. A Blocked All-Pairs Shortest Paths Algorithm / G. Venkataraman, S. Sahni, S. Mukhopadhyaya //
Journal of Experimental Algorithmics (JEA). – 2003. – Vol. 8. – P. 857–874.

10. Albalwi, E. Task Level Parallelization of All Pair Shortest Path Algorithm in OpenMP 3.0 / E. Albalwi, P.
Thulasiraman, R. Thulasiram // Advances in Computer Science and Engineering (CSE 2013), Los Angeles. – Los Angeles: Atlantis
Press, 2013. – P. 109–112.

11. Tang, P. Rapid development of parallel blocked all-pairs shortest paths code for multi-core computers / P. Tang //
IEEE SOUTHEASTCON 2014, Lexington, KY, USA. – Lexington, KY, USA: IEEE, 2014. – P. 1–7.

12. Singh, A. Performance Analysis of Floyd Warshall Algorithm vs Rectangular Algorithm / A. Singh, P. K. Mishra //
International Journal of Computer Applications. – 2014. – Vol. 107, №. 16. – P. 23–27.

13. An Experimental Study of a Parallel Shortest Path Algorithm for Solving Large-Scale Graph Instances / K. Madduri
[et al.] // 2007 Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments (ALENEX). – Society for Industrial
and Applied Mathematics, 2007. – P. 23–35.

14. Karasik, O.N. Cooperative multi-threaded scheduler and block-parallel algorithms of solving tasks on multi-core
systems / O.N. Karasik. – Belarusian state university of informatics and radio-electronics, 2019.

15. Karasik, O.N. Threaded block-parallel algorithm for finding the shortest pats on graph / O.N. Karasik, A.A.
Prihozhy // Doklady BGUIR. – 2018. – No. 2. – P. 77–84.

16. Prihozhy, A.A. Cooperative block-parallel algorithms for task execution on multi-core system / A.A. Prihozhy, O.N.
Karasik // System analysis and applied information science. – 2015. – No. 2. – P. 10–18.

17. Prihozhy, A.A. Simulation of direct mapped, k-way and fully associative cache on all pairs shortest paths algorithms
/ A.A. Prihozhy // System analysis and applied information science. – 2019. – No. 4. – P. 10–18.

18. Prihozhy, А.A. Inference of shortest path algorithms with spatial and temporal locality for Big Data processing /
A.A. Prihozhy, O.N. Karasik // Big Data and Advanced Analytics: Proc. VIII Intern. Conf., Minsk, May 11-12, 2022. – Minsk:
Bestprint, 2022. – P. 56–66.

19. Intel Corporation. Allow Multiple Runs or Multiplex Events [Electronic resource]. – Mode of access: URL: https://
www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/hw-event-based-sampling-
collection/allow-multiple-runs-or-multiplex-events.html. – Date of access: 07.03.2022.

20. Intel Corporation. Hardware Event-based Sampling Collection [Electronic resource]. – Mode of access: URL: https://
www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/hw-event-based-sampling-
collection.html – Date of access: 07.03.2022).

О. Н. КАРАСИК, A. A. ПРИХОЖИЙ

НАСТРОЙКА БЛОЧНО-ПАРАЛЛЕЛЬНОГО АЛГОРИТМА ПОИСКА КРАТКИХ
ПУТЕЙ НА ЭФФЕКТИВНУЮ МНОГОЯДЕРНУЮ РЕАЛИЗАЦИЮ

Белорусский национальный технический университет

 Поиск кратчайших путей во взвешенном графе — одна из ключевых задач компьютерных наук,
которая имеет множество практических приложений в различных областях. В данной работе анализируется
блочно-параллельный алгоритм поиска кратчайших путей с целью оценки влияния многоядерной системы
и ее иерархической кэш-памяти на параметры реализации алгоритма в зависимости от размера графа и
размера блока матрицы расстояний. В ней предлагается метод настройки размера блока на особенности
многоядерной системы. Метод предполагает использование инструментов профилирования в процессе
настройки и позволяет увеличить производительность параллельного алгоритма. Вычислительные
эксперименты, проведенные на стоечном сервере, оснащенном двумя процессорами Intel Xeon E5-2620 v4,
состоящих из 8 ядер и 16 аппаратных потоков каждый, убедительно показали для различных размеров
графов, что поведение и параметры работы иерархической кэш-памяти слабо зависят от размера графа и
определяются размером блока матрицы расстояний. Чтобы настроить алгоритм на целевую многоядерную
систему, предпочтительный размер блока может быть найден один раз для графа, размер представления
которого превышает размер кэша, совместно используемого ядрами процессора. После этого найденный
размер блока можно многократно использовать для эффективного решения задачи о кратчайших путях на
графах большего размера.
 Ключевые слова: кратчайший путь; алгоритм Флойда-Уоршелла; блочный алгоритм; много-
поточный алгоритм; многопроцессорная система; иерархическая кэш память, параллелизм.

DATA PROCESSING AND DECISION-MAKING 65

3, 2022 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

Анатолий Прихожий, профессор кафедры Программное обеспечение информационных систем
и технологий Белорусского национального технического университета, доктор технических
наук (1999 г.), профессор (2001 г.). Исследовательские интересы: языки программирования и
описания оборудования, распараллеливающие компиляторы, а также методы и инструменты
автоматизированного проектирования программного и аппаратного обеспечения на логическом,
высоком и системном уровнях, а также для неполностью определенных логических систем. Имеет
более 300 публикаций в Восточной и Западной Европе, США и Канаде. Его работы публиковали
такие мировые издательства, как IEEE, Springer, Kluwer Academic Publishers, World Scientific и
другие.
Anatoly Prihozhy, full professor at the Computer and system software department of Belarus national
technical university, doctor of science (1999) and full professor (2001). His research interests include
programming and hard- ware description languages, parallelizing compilers, and computer aided design
techniques and tools for software and hardware at logic, high and system levels, and for incompletely
specified logical systems. He has over 300 publications in Eastern and Western Europe, USA, and Canada.
Such worldwide publishers as IEEE, Springer, Kluwer Academic Publishers, World Scientific and others
have published his works.

prihozhy@bntu.by

Карасик Олег, технический директор компании ISsoft Solutions (часть Coherent Solutions) в Минске,
Беларусь, кандидат технических наук. Его исследовательские интересы включают параллельные
многопоточные приложения и распараллеливание для многоядерных и многопроцессорных систем.
Karasik Oleg, Technology Lead at ISsoft Solutions (part of Coherent Solutions) in Minsk, Belarus,
and PhD in Technical Science. His research interests include parallel multithreaded applications and the
parallelization for multicore and multiprocessor systems.

