Владимир КОНДРАТЮК,

доцент Белорусской государственной политехнической академии

Деформация корпуса от действия точечной температурной нагрузки*

Расчет будем производить на основе вариационно-

Расчет практически ничем не отличается от расчета при статической нагрузке. Коэффициенты левой части уравнения [2] остаются неизменными. Изменения вносятся в правые части уравнений.

Если известен закон изменения температуры внутри объема, то свободные члены вариационных уравнений вычисляются по формулам:

$$T_{jx} = \int_{V} B \cdot \tau \frac{\partial \varphi_{j}}{\partial x} dV$$
,

$$T_{gy} = \int_{V} B \cdot \tau \frac{\partial \Psi_{g}}{\partial y} dV , \qquad (1)$$
$$T_{dz} = \int_{V} B \cdot \tau \frac{\partial f_{d}}{\partial z} dV ,$$

где T_{jx} , T_{gy} , T_{dz} — обобщенные силы, вызванные температурной нагрузкой;

$$B = 2 G \alpha \frac{1+\upsilon}{1-2\upsilon},$$

и — коэффициент Пуассона;

G — модуль сдвига,

α — коэффициент линейного расширения,

 τ — закон изменения температуры;

 $\boldsymbol{\varphi}_{i}, \boldsymbol{\psi}_{a}, f_{d}$ — координатные функции;

V — объем, в котором приложена температурная нагрузка.

При такой постановке задачи требуется внести изменения в уравнения внутренних связей. Интегралы (1) вычисляются в смысле Стильтьеса. Их можно преобразовать через подводимое количество тепла Q:

$$Q = c \cdot m \cdot \tau = c \cdot \rho \cdot \Delta V \cdot \tau,$$

откуда
$$\boldsymbol{ au} = rac{Q}{c \cdot oldsymbol{
ho} \cdot arDelta V}$$
 ,

где с — удельная теплоемкость.

 $m = \rho \cdot \Delta V$ — масса элемента объема ΔV , τ — изменение температуры элемента объема.

С учетом
$$\boldsymbol{\tau} = \frac{\boldsymbol{Q}}{\boldsymbol{c} \cdot \boldsymbol{\rho} \cdot \Delta V}$$
, формулы для обоб-

щенных сил примут вид:

$$T_{jx} = B \frac{Q}{c \cdot \rho \cdot \Delta V} \cdot \frac{\partial \varphi_j}{\partial x} \Delta V =$$
$$= \frac{B \cdot Q}{c \cdot \rho} \cdot \frac{\partial \varphi_j}{\partial x} \Big|_{x,y,z} ,$$

(2)

$$T_{gy} = \frac{B \cdot Q}{c \cdot \rho} \cdot \frac{\partial \psi_g}{\partial y} \Big|_{x,y,z}$$

$$\Gamma_{dz} = \frac{B \cdot Q}{c \cdot \rho} \cdot \frac{\partial f_d}{\partial z} \Big|_{x,y,z} ,$$

где *x*, *y*, *z* — координаты точки приложения температурной нагрузки.

Полагая в (2)
$$k = \frac{B \cdot Q}{c \cdot \rho} = l$$
, можно изучите

качественный характер влияния температуры на на-

21

^{*} Продолжение разговора. Начало см. на стр 5-7.

На путях ускорения НТП

пряженно-деформированное состояние детали.

Описание геометрии корпуса

Геометрия области, занимаемая корпусной деталью (рис. 1), задается координатами составляющих ее элементарных областей — 33 параллелепипедов, 37 призм, 33 цилиндров. Все указанные элементы параллельны оси Z.

Значение координат всех параллелепипедов, призм и цилиндров приведены соответственно в таблицах 2, 3, 4.

Начало координат выбрано в центре нижней плоскости отверстия Ø 370. Деталь крепится к некоторому основанию с помощью четырех болтов М24 в точках 1, 2, 3 и 4, а в точках 5 и 6 (рис. 2) центрируется с помощью штифтов Ø 24. Поэтому для расчетной модели выбраны следующие кинематические связи: в точках 1, 2, 3, 4 перемещение по оси Oz w=0, а в точках 5 и 6 перемещения равны нулю по осям Ох и *Оу*, т.е. *u*=*v*=0. Координаты этих точек приведены в таблице 1.

22

23

Таблица 1

На путях ускорения НТП

№ № т очек	Значения координат, м						
	x	У	Z				
: 1	-0.235	-0.170	0.136				
2	-0.295	0.170	0.136				
3	0.235	0.170	0.136				
4	0.235	-0.170	0.136				
5	0.235	-0.270	0.136				
6	-0.215	0.270	0.136				

При расчете учитывалась только температурная нагрузка, приложенная в точках 16 (x = 0,236, y = 0,056, z = 0,144) и 17 (x = 0,236, y = 0,056, z = 0,144) — отверстия Ø 76,5, $B \cdot \tau$ было принято равным единице.

В результате расчета необходимо оценить напряженно-деформированное состояние корпуса при воздействии температурной нагрузки, а также характер деформации в окрестностях точек 7, 8, 9, 10 и 11 (отверстия \emptyset 35), расположение которых указано на рис. 2. В этих точках определялись напряжения и перемещения, изменение их межосевых расстояний и взаимного положения.

Таблица 2

Координаты параллелепипедов (в метрах)

.№ п/п	x_{2}	<i>x</i> ₁	y ₂	y ₁	z ₂	z ₁
1	0,280	-0,280	0,340	-0,340	0,147	0,140
2	0,280	-0,189	-0,334	-0,340	0,245	0,147
3	0,280	-0,189	0,340	0,334	0,245	0,147
4	0,280	0,274	0,334	-0,334	0,245	0,147
5	-0,274	-0,280	0,258	-0,258	0,245	0,147
6	-0,272	-0,200	0,061	-0,061	0,147	0,140
7	-0,194	-0,274	-0,114	-0,226	0,184	0,147
8	-0,194	-0,274	0,226	0,114	0,184	0,147
9	0,274	0,194	-0,114	-0,226	0,184	0,147
10	0,274	0,194	0,226	0,114	0,184	0,147
11	0,194	-0,194	-0,191	-0,207	0,153	0,147
12	0,194	0,085	-0,171	-0,191	0,153	0,147
13	0,194	0,160	-0,114	-0,171	0,153	0,147
14	-0,085	-0,194	-0,171	-0,191	0,153	0,147
15	-0,160	-0,194	-0,114	-0,171	0,153	0,147
16	-0,080	-0,194	0,226	0,114	0,153	0,147
17	0,196	0,273	-0,118	-0,222	0,143	0,140
18	0,273	0,196	0,222	0,118	0,140	0,143
19	-0,196	-0,273	0,222	0,118	0,140	0,143
20	-0,196	-0,273	-0,118	-0,222	0,140	0,143
21	0,274	0,237	-0,297	-0,334	0,240	0,215
22	0,274	0,237	0,334	0,297	0,240	0,215
23	0,183	0,060	-0,180	-0,301	0,113	0,103
24	0,004	-0,004	-0,199	-0,210	0,140	0,040
25	0,004	-0,004	-0,210	-0,220	0,140	0,060
26	0,004	-0,004	-0,220	-0,230	0,140	0,075
27	0,004	-0,004	-0,230	-0,240	0,140	0,095
28	0,004	-0,004	-0,240	-0,250	0,140	0,115
29	0,004	-0,004	0,210	0,199	0,140	0,040
30	0,004	-0,004	0,220	0,210	0,140	0,060
31	0,004	-0,004	0,230	0,220	0,140	0,075
32	0,004	-0,004	0,240	0,230	0,140	0,095
33	0,004	-0,004	0,250	0,240	0,140	0,115

На путях ускорения НТП

Таблица З

24

Координаты призм

$rac{\mathcal{N}_{0}}{n/n}$	<i>z</i> ₂	z _I	.У ₂	y ₁	$tg\beta_2$	<i>b</i> ₂	tgβ ₁	b ₁
1	0,147	0,140	-0,340	-0,258	-1	-0,538	0	-0,280
2	0,147	0,140	0,258	0,340	1	-0,538	0	-0,280
3	0,245	0,147	-0,258	-0,340	-1	-0,529	-1	-0,538
4	0,245	0,147	-0,334	-0,340	0	-0,189	-1	-0,529
5	0,245	0,147	0,340	0,258	1	-0,529	1	-0,538
6	0,245	0,147	0,340	0,334	0	-0,189	1	-0,529
7	0,153	0,147	-0,095	-0,114	-0,63	-0,225	1,53	-0,018
8	0,153	0,147	-0,095	-0,114	-1,6	0,012	0,66	0,228
9	0,153	0,147	0,114	0,095	1,6	0,012	-0,66	0,228
10	0,153	0,147	0,114	0,095	0,66	-0,228	-1,6	-0,011
11	0,153	0,147	-0,114	-0,171	-1,12	-0,288	0	-0,16
12	0,153	0,147	-0,171	-0,191	-2,25	-0,470	0	-0,08
13	0,153	0,147	-0,114	-0,171	0	0,160	1,12	0,288
14	0,153	0,147	-0,171	-0,191	1	0,085	2,25	0,470
15	0,153	0,147	0,114	0,173	0	-0,080	1,237	-0,294
16	0,153	0,147	0,206	0,226	0	-0,080	-5,7	1,094
17	0,153	0,147.	0,226	0,191	0	0,194	5,83	-1,121
18	0,153	0,147	0,191	0,150	0	0,194	-1,927	0,412
19	0,153	0,147	0,150	0,114	0	0,194	-0,8	0,244
20	0,113	0,103	-0,130	-0,180	-0,56	0,079	1,04	0,287
21	0,113	0,103	-0,185	-0,130	- 0	0,183	-0,56	0,079
22	0,113	0,103	-0,190	-0,180	3	0,630	0	0,060
23	0,113	0,103	-0,301	-0,190	-0,33	0	0	0,060
24	0,113	0,103	-0,301	-0,276	0 .	0,183	1	0,459
25	0,113	0,103	0,202	0,190	-4,41	1,018	1,09	-0,093
26	0,113	0,103	0,190	0,176	0,71	0,045	() 1	-0,076
27	0,113	0,103	0,176	0,140	0,7	0,047	-1,25	0,320
28	0,113	0,103	0,207	0,190	-0,7	0,017	0,82	-0,324
29	0,113	0,103	0,190	- 0,173	-0,94	0,063	0	-0,168
30	0,113	0,103	0,173	0,140	1,33	-0,320	-0,66	0,054
31	0,113	0,103	-0,190	-0,207	0,7	0,017	-0,82	-0,324
32	0,113	0,103	-0,173	-0,190	0,94	0,053	0	-0,168
33	0,113	0,103	-0,140	-0,173	-1,33	-0,330	0,66	-0,054
34	0,240	0,215	-0,243	-0,243	-0,92	-0,458	0,92 -	-0,011
35	0,240	0,215	-0,270	-0,295	1	0,060	-1	-0,530
36	0,240	0,215	0,295	0,270	-1	0,060	1	-0,530
37	0,240	0,215	0,270	0,243	0,92	-0,458	-0,92	-0,011

25

Координаты цилиндров

Таблица 4

N п/п	z ₂	z ₁	R	x _o	y _o
· •1	0,030	0	0,205	0	0
2	0	0,030	0,185	. 0	0
3	0,140	0,030	0,199	0	0
4	0,030	0,140	0,191	0	0
5	0,140	0,147	0,038	0,236	0,056
6	0,140	0,147	0,038	0,236	0,056
7	0,140	0,147	0,191	0	0
8	0,140	0,147	0,017	0,138	-0,256
9	0,103	0,113	0,025	0,138	-0,256
10	0,140	0,153	0,017	0,141	-0,180
11	0,103	0,113	0,017	0,141	-0,180
12	0,140	0,153	0,017	0,141	0,180
13	0,103	0,113	0,017	0,141	0,180
14	0,140	0,153	0,017	-0,141	0,180
15	0,103	0,113	0,017	-0,141	0,180
16	0,140	0,153	0,017	-0,141	-0,180
17	0,103	0,113	0,017	-0,141	-0,180
18	0,143	0,175	0,012	0,235	-0,170
19	0,143	0,175	0,012	0,235	0,170
20	0,143	0,175	0,012	-0,235	0,170
21	0,143	0,175	0,012	-0,235	-0,170
22	0,140	0,147	0,022	0,162	0,234
23	0,140	0,147	0,018	0,190	0,302
24	0,140	0,143	. 0,016	0,197	0,261
25	0,140	0,147	0,011	0,223	0,302
26	0,186	0,147	0,020	0,235	-0,270
27	0,186	0,147	0,020	-0,215	0,270
28	0,140	0,176	0,012	0,235	-0,270
29	0,140	0,176	0,012	0,215 (c) of the second	0,270
30	0,215	0,240	0,009	0,256	-0,316
31	0,215	0,240	0,009	0,256	0,316
32	0,215	0,240	0,009	-0,235	0,270
33	0,215	0,240	0,009	-0,235	-0,270

Краткий

анализ результатов расчета

При расчете учитывалась только температурная нагрузка, приложенная в точках 16 и 17 (отверстия Ø 76,5). Была принята условная температурная нагрузка, при которой $B \cdot \tau$ =1, поэтому по полученным расчетным данным можно судить лишь о характере напряженнодеформированного состояния корпуса, а для определения значений напряжений и деформаций в окрестности расчетных точек 7, 8, 9, 10 и 11 — отверстия или в других местах необходимо задаться конкретным значением τ . Определив произведение $B \cdot \tau$ и умножив результат на полученное расчетное значение, найдем величину напряжения или перемещения при заданной температуре. Так как при расчете данного корпуса принято $v = 0,25; \alpha = 2 \cdot 10^{-5}$, то $B = 5\alpha$. Пусть $\tau = 100^{\circ}$, тогда $B\tau = 5\alpha\tau = 5 \cdot 2 \cdot 10^{-5} \cdot 10^2 = 10^{-2}$.

Таким образом, если расчетное значение некоторого перемещения равно 6 мм, то при данных условиях на самом деле перемещение будет равно 6 \cdot 10⁻² = 0,06 мм.

На рис. 3 представлена общая картина напряженно-деформированного состояния корпуса: линия 1 перемещения « нижних точек передней стенки (x = 0,28, z = 0,141); линия 2 — w перемещения верхних точек передней стенки (x = 0,28; z = 0,255); линия 3 — перемещения « верхних точек задней стенки (x = 0,28; z = 0,255); линия 4 — перемещения w верхних точек правой боковой (y = 0,34; z = 0,255); линия 5 — перемеще-

На путях ускорения НТП

Рис. 3 Характер деформации корпуса

ния v верхних точек правой боковой стенки (y = 0,34; z = 0,255); линии 6 и 7 — соответственно перемещения и точек вертикального отрезка пересечения передней стенки с правой и левой боковыми стенками; линия 8 — перемещения w и линия 9 — перемещения v верхних точек левой боковой стенки (y = -0,34; z = 0,255).

Как следует из рис. 3, вследствие температурного воздействия происходит коробление детали, представляющее собой совокупность изгибов во всех трех координатных плоскостях. При этом выпучивание детали в плоскости *уог* более заметно вблизи приложения температурной нагрузки (линии 1; 2) и практически отсутствует вблизи удаленной стенки (линия 3). Характер перемещений в плоскости *хоу* (линии 5 и 9) также указывает на то, что та сторона, где приложена температурная нагрузка удлиняется, а противоположная несколько сокращается.

В плоскости zox графики перемещений w (линии 4 и 8) и перемещений u (линии 6 и 7) указывают на то, что верхние линии корпуса испытывают растяжение, причем правая часть корпуса больше деформируется, чем левая, что объясняется условиями закрепления —

на точку N 5, расположенную в левом углу, наложи связи u = v = 0.

Расчет производился с помощью авторского пакета прикладных программ "КОРПУС", зарегистрированного в фонде алгоритмов и программ Министерства образования Республики Беларусь (1990 г.), отчете по ГБ 97-10, БГПА г.Минск — регистрационный N 1997118 (1998 г.).

Рассмотренная нами методика может быть использована в расчетах технологических процессов, связанных с температурным воздействием.

Список использованных источников:

1. Крушевский А.Е. Вариационные методы расчета корпусных деталей машин. — Минск: Наука и техника, 1967.

2. Кондратюк В.Ф. К вопросу применения вариационного уравнения Лагранжа равновесия полного объема в задачах теории упругости. Минск, БПИ, 1988. Деп. ВИНИТИ, N 1915-В88.

Беларускія вучоныя бяруць удзел у 🔶 да сусветных стандартаў буйнейшым праекце міжнароднага навукова-тэхнічнага супрацоўніцтва – СМS

Як паведаміў на прэс-канферэнцыі старшыня Дзяржкамітэта па навуцы і тэхналогіях Віктар Гайсёнак, найбольш маштабным праектам міжнароднага навукова-тэхнічнага супрацоўніцтва з удзелам Беларусі з'яўляецца распрацоўка і стварэнне вымяральнага комплексу CMS. Работа ажыццяўляецца сумесна з Еўрапейскімі цэнтрамі ядзерных даследванняў (ЦЕРН) у Жэневе. У ім бяруць удзел 1700 фізікаў і інжынераў са 150 інстытутаў 32 краін свету. Кошт праекта ацэньваецца ў 350 мільёнаў долараў. Прафесар В.Гайсёнак назваў СМЅ-комплекс "устройствам будучага", на якім фізікі ўсяго свету будуць працаваць у XXI стагоддзі. Гэтае прыстасаванне ўяўляе сабою комплекс вымяральных прыбораў, прызначаны для ўстаноўкі на велізарным паскаральніку часціц на сустрэчных пратонных пучках, які будуецца ў Швейцарыі. Ажыццяўленне CMS-эксперыменту, як лічаць аўтары праекта, дазволіць вырашыць загадку аб існаванні так званых хігсавых базонаў — пераносчыкаў фундаментальных узаемадзеянняў, якіх фізікі-эксперыментатары шукаюць ужо больш за 20 гадоў.

Як адзначыў на прэс-канферэнцыі кіраўнік праекта СМЅ Мішэль Дэла Негра, Беларусі выгадна удзельнічаць у гэтым праекце, паколькі прадпрыемствы будуць атрымліваць прэстыжныя заказы (па крайняй меры, да 2005 года), а беларускія вучоныя і інжынеры змогуць павышаць свой прафесійны ўзровень.

26

Каардынатар праекта CMS ад Расіі, акадэмік Расійскай інжынернай акадэміі Ігар Галутвін заўважыў адносна гэтага, што за апошнія гады аўтарытэт беларускіх вучоных у свеце, нягледзячы на цяжкія часы, значна ўзрос.

Уладзімір ТРАЦЦЯКОУ.