$$\begin{cases} y_B = k_{AB} \cdot x_B \\ y_B = k_{BC} \cdot x_B + b_{BC} \end{cases}$$
(10)

На основании полученных результатов используя формулу Гаусса можно определить площадь сечения котлована

$$F = \frac{1}{2} |x_A y_B + x_B y_C + x_C y_D + x_D y_A - y_A x_B - y_B x_C - y_C x_D - y_D x_A|.$$
(11)

Для определения объема котлована полученную площадь поперечного сечения необходимо умножить на среднюю линию трапеции продольного сечения *S* (см. рис. 1), проходящего по горизонтали, которую можно определить по следующей зависимости

$$S = L_{\kappa}^{H} + m \cdot H_{\kappa}, \tag{12}$$

Таким образом объем котлована $V_{\text{кот}}$ можно найти по формуле

$$V_{\rm KOT} = F \cdot S. \tag{13}$$

Выводы

Математического метода (автор Левицкий А.А.) дает нулевую погрешность по сравнению с расчетом объема котлована по САПР AutoCAD. Следует отметить, что расчет по САПР AutoCAD основан на подсчете объема который равен реальному объему вынутого грунта, поэтому предложенный метод расчета имеет высокую точность.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

1. Производство земляных работ при устройстве фундаментов / сост. Е.Г. Кремнева – Минск, 2008. – 172 с.

УДК 531.781.2

Ковалёнок Н.А., Быков, К.Ю

Научные руководители:. Качанов И.В, Ленкевич С.А.

Белорусский национальный технический университет

ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ СКОРОСТНОГО ПЛАСТИЧЕСКОГО ТЕЧЕНИЯ МЕТАЛЛА В ПРОЦЕСССЕ ИЗГОТОВЛЕНИЯ ДОРОЖНЕХ РЕЗЦОВ

Реализация процесса изготовления дорожных резцов заключается в скоростном деформировании предварительно нагретых составных заготовок (рис. 1), состоящих из корпуса резца и его рабочей части. Основой заготовки

(корпуса резца) может служить конструкционная легированная сталь 40Х или 5ХНМ, а в качестве рабочей части (наконечника) – быстро- режущие стали P18, P6M5, а также высоколегированные штамповые стали ДИ23, 5ХНМ, 3Х2В8Ф [2, 5]

1 – корпус резца; 2 – рабочая часть

Рисунок 1 – Схема соединения заготовки

Для исследования скоростного пластического течения металла при формообразовании плоских биметалличечских дорожных резцов была разработана модель динамического взаимодействия системы «пуансон – деформируемая заготовка».

В качестве основного метода исследований пластического формоизменения был выбран приближенный энергетический метод — метод верхней оценки.

Для расчета усилия $P_{\rm n}$, воспринимаемого пуансоном в процессе выдавливания, было использовано кинематически возможное поле скоростей, преобразованное из действительного непрерывного поля линий скольжения (рисунок 1) путем линейной аппроксимации. Принятое поле скоростей состояло из недеформируемых блоков 0-7, в котором пластические области сосредоточены в треугольных зонах 2, 4, 6 и характеризуется постоянными значениями скорости и ускорения для всех точек указанных блоков, относительно неподвижной области [1–5].

I – пуансон; II – промежуточный боек; III – заготовка; IV – полуматрица [1]

Рисунок 1 – Кинематически возможное поле скоростей при скоростном выдавливании биметаллических дорожных резцов Стоит отметить, что в ходе решения поставленной задачи процесс выдавливания разделялся на две стадии: стадию разгона ($P_{n.p.}$) и стадию торможения, состоящую из двух этапов (P_{n1} и P_{n2}). Отличительной особенностью стадии разгона является то, что она позволяет провести анализ обратного выдавливания, в процессе которого металл течет в направлении противоположном ходу пуансона [1].

Для нахождения усилия P_{Π} воздействующего на пуансон на каждой стадии процесса, используя геометрические размеры пуансона 2*A*, *b*; коэффициенты вытяжки λ_1 , λ_2 , λ_3 ; параметры поля α , β , γ , были выражены границы блоков l_{rs} , определены массы блоков m_i и установлены соотношения между кинематическими параметрами точек деформируемой заготовки (v_{rs} , (v_n)_{rs}, ω_i , ω_i) и блока 1 (v_{01} , ω_{01}) [1, 2, 6].

Усилие, действующее на пуансон в процессе выдавливания, находилось из уравнения баланса мощностей внутренних и внешних сил [1, 2]:

$$W_{\rm n} = W_{\rm c.c} = W_{\rm co5} + W_{\rm дин} \pm W_{\rm uh}, \tag{1}$$

где $W_{\rm n}$ – мощность движущегося пуансона; $W_{\rm c.c}$ – суммарная мощность сил сопротивления; $W_{\rm co6}$ – мощность сил собственного сопротивления металла деформированию; $W_{\rm дин}$ – мощность от действия динамических напряжений на поверхностях разрыва скоростей; $W_{\rm uh}$ – мощность локальных сил инерции движущейся заготовки.

После определения, по известным зависимостям [2], всех составляющих мощности из уравнения (1), для каждой стадии процесса выдавливания, определялись оптимальные значения углов матричной полости α_{opt}, β_{opt}, γ_{opt}, при которых значения мощности сил собственного сопротивления имеют минимальные значения.

Полученные зависимости для определения оптимальных углов матричной полости α_{opt}, β_{opt}, γ_{opt} имеют вид [1]:

$$\alpha_{opt} = \arccos \sqrt{\frac{2\lambda_1^2 \mu + \lambda_1^2 - 2\lambda_1 \mu - 2\lambda_1 + 1}{4\lambda_1^2 \mu + 2\lambda_1^2 - 4\lambda_1 \mu - \lambda_1 + 1}}.$$
(2)

$$\beta_{opt} = \arccos \sqrt{\frac{2\lambda_2^2 \mu + \lambda_2^2 - 2\lambda_2 \mu - 2\lambda_2 + 1}{4\lambda_2^2 \mu + 2\lambda_2^2 - 4\lambda_2 \mu - \lambda_2 + 1}}.$$
(3)

$$\gamma_{opt} = \arccos \sqrt{\frac{2\lambda_3^2 \mu + \lambda_3^2 - 2\lambda_3 \mu - 2\lambda_3 + 1}{4\lambda_3^2 \mu + 2\lambda_3^2 - 4\lambda_3 \mu - \lambda_3 + 1}}.$$
(4)

В выражениях (2)-(4) λ₁, λ₂, λ₃ – коэффициенты вытяжки, μ – коэффициент контактного трения.

Затем проведя ряд преобразований с использованием полученных уравнений (2)-(4) были определены зависимости для расчета минимальных

верхнеграничных усилий $P_{\pi.p., min}$, $P_{\pi1,min}$ и $P_{\pi2,min}$, воспринимаемых пуансоном на каждом этапе процесса [1]:

$$P_{\text{n.p.,min}} = \frac{2AbM \left\{ k \left[F_{1,opt}(\alpha,\lambda_1,\mu) + 2\mu h_{\text{p}} \frac{\lambda_1^2 + 1}{A} \right] + \rho v_0^2 F_{2,opt}(\alpha,\lambda_1) \right\}}{M - 2A^2 b \rho \left(F_{3,opt}(\alpha,\lambda_1) + h_{\text{p}} \frac{\lambda_1^2}{A} + \frac{l_{\text{n6}} \rho_{\text{n6}}}{A\rho} \right)}$$
(5)

$$P_{n1,min} = \frac{2AbM\left\{k\left[F_{4,opt}(\beta,\lambda_{2},\mu) + 2\mu\left(\frac{L_{3ar'} - h_{1}}{A} + h_{1}\frac{\lambda_{2}^{2}}{A}\right)\right] + \rho\nu_{0}^{2}F_{5,opt}(\beta,\lambda_{2})\right\}}{M + 2A^{2}b\rho\left(F_{6,opt}(\alpha,\beta,\lambda_{1},\lambda_{2}) + \frac{L_{3ar'} - h_{1}}{A} + h_{1}\frac{\lambda_{1}^{2}}{A} + \frac{l_{n6}\rho_{n6}}{A\rho} - \frac{h_{p}}{A}\right)}$$
(6)

$$P_{n2,min} = \frac{2AbM \left\{ k \left[F_{4,opt}(\beta,\lambda_{2},\mu) + 2\mu \left(\frac{L_{3ar'} - h_{1} - h_{2}}{A} + h_{2} \frac{\lambda_{2}^{2}}{A} \right) \right] + \rho v_{0}^{2} F_{5,opt}(\beta,\lambda_{2}) \right\}}{M + 2A^{2} b\rho \left(F_{6,opt}(\alpha,\beta,\lambda_{1},\lambda_{2}) + \frac{L_{3ar'} - h_{1} - h_{2}}{A} + h_{2} \frac{\lambda_{1}^{2}}{A} + \frac{l_{n6} \rho_{n6}}{A\rho} - \frac{h_{p}}{A} \right)} + \frac{2AbM \left\{ k \left[F_{7,opt}(\gamma,\lambda_{3},\mu) + 2\mu \left(h_{2} \frac{\lambda_{2}^{2}(\lambda_{3}^{2}+1)}{A} \right) \right] + \rho v_{0}^{2} F_{8,opt}(\gamma,\lambda_{2},\lambda_{3}) \right\}}{M + 2A^{2} b\rho \left(F_{9,opt}(\gamma,\lambda_{3}) + h_{2} \frac{\lambda_{2}^{2}(\lambda_{3}^{2}+1)}{A} \right) \right]}$$
(7)

Таким образом, полученные зависимости описывают силовой режим пластического течения металла при формообразовании плоских биметаллических дорожных резцов. Полученные уравнения являются в высокой степени корректными и могут быть использованы при разработке промышленной технологии скоростного, комбинированного, горячего выдавливания биметаллических дорожных резцов.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Быков, К. Ю. Силовой режим скоростного комбинированного выдавливания плоских биметаллических дорожных резцов / К. Ю. Быков, И. В. Качанов, И. М. Шаталов // НАУКА и ТЕХНИКА. – 2021. – Т. 20, №4. – С. 287-295.

2. Здор, Г. Н. Технология высокоскоростного деформирования материалов / Г. Н. Здор, Л. А. Исаевич, И. В. Качанов. – Минск: БНТУ, 2010. 456 с.

3. Качанов, И. В. Ресурсосберегающая технология скоростного горячего выдавливания биметаллического стержневого инструмента / И. В. Качанов, В. Н. Шарий, В. В. Власов // Наука и техника. – 2016. – Т. 15, № 1. – С. 3–8.

4. Тутышкин, Н. Д. Соотношение на разрывах при динамической плоской деформации / Н. Д. Тутышкин // Технология машиностроения. – Тула, 1972. – Вып. 29 – С. 56–66.

5. Алюшин, Ю. А. Теория обработки металлов давлением / Ю. А. Алюшин – Ростов-н/Д: изд-во РИСХМА, 1972. – 85 с.

6. Качанов, И. В. Оптимизация режима нагружения при скоростном ударном выдавливании биметаллических плоскоступенчатых стержневых изделий / И. В. Качанов, В. В. Власов // Вес. Нац. акад. навук Беларусі. Сер. фіз.-тэхн. акад. навук. - 2018. - Т. 63, №1. - С. 43-52.

УДК 532.59

Комзолова Д.С., Смагин И.А.

Научные руководители: Шаталов И.М., Щербакова М.К. Белорусский национальный технический университет

ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ НЕУСТАНОВИВШЕГОСЯ ДВИЖЕНИЯ ПОТОКА ПРИ ПРОРЫВЕ НАПОРНЫХ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ В УСЛОВИЯХ ВЫСОКОГОРЬЯ

Неустановившееся движение потока воды в открытых руслах (реках и каналах) может возникать при прорыве плотин; в результате маневрирования затворами гидротехнических сооружений (шлюзов, водозаборов, гидроэлектростанций и т.д.); включения и выключения насосных станций. При этом неустановившееся движение в открытых руслах чаще всего принимает форму волны перемещения прямой или обратно, положительной или отрицательной [1].

Волны перемещения в этих случаях имеют строго направленное продольное движение (рис.1).

Для теоретического анализа и расчета такого движения обычно принимают плотность воды ρ (кг/м³) постоянной, а русло достаточно широким, т.е. B >> h (где B, м – ширина русла по урезу воды; h, м – глубина потока) и поперечное сечение русла близким к прямоугольной форме, а неустановившееся движение сравнивается с установившимся равномерным движением воды при котором силы трения и поверхность потока уравновешиваются проекцией силы тяжести, действие которой обусловлено продольным уклоном водотока.