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Abstract 
Solar panels have a nonlinear voltage-current characteristic, with a distinct maximum 
power point (MPP), which depends on the environmental factors, such as temperature and 
irradiation. In order to continuously harvest maximum power from the solar panels, they have to 
operate at their MPP despite the inevitable changes in the environment. This is why the 
controllers of all solar power electronic converters employ some method for maximum power 
point tracking (MPPT).   Over the past years many MPPT techniques have been published and 
based on that the main paper’s objective is to analyze one of the most promising MPPT control 
algorithms: fuzzy logic controller.  
 
I. Introduction 
According to the realization of high efficiency and low cost photovoltaic (PV) modules, interest 
in photovoltaic power generation system has increased over the past decade as a clean and 
infinite energy [1]. The PV modules have maximum operating points corresponding to the 
surrounding condition such as intensity of the sunlight, the temperature of the PV modules, cell 
area, and load. When solar energy is used as a power source, the output power has to be     
maximized by improving the efficiency of the power conditioning equipment used and 
implementing an adaptive power controller that automatically tracks the system to the point of 
maximum power delivered from the solar panel under all conditions. 
 
Solar energy has offered promising results in the quest of finding the solution to the problem. 
The harnessing of solar energy using PV modules comes with its own problems that arise from 
the change in insulation conditions. These changes in insulation conditions severely affect the 
efficiency and output power of the PV modules. A great deal of research has been done to 
improve the efficiency of the PV modules. A number of methods of how to track the maximum 
power point of a PV module have been proposed to solve the problem of efficiency and products 
using these methods have been manufactured and are now commercially available for consumers 
[1].  
 
Maximum Power Point Tracking (MPPT) is the newest concept which helps to extract the 
maximum possible power from a PV array. The MPPT methods are various in the complexity, 
convergence speed, popularity, cost, operating range, sensor dependence, capability of escaping 
from local optima and their applications [2]-[7]. 
One of the most significant issues in PV system and MPPT efficiency is DC-DC converter.  In 
recent years, there has been increasing interest in the development of efficient control   strategies 
to  improve  dynamic behavior of DC–DC converters by using traditional PID based controllers  
and  fuzzy logic  controller (FLC), neural networks (NN), and neuro-fuzzy controller or adaptive 
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fuzzy logic controller (AFLC) which have been used to control  buck, boost and buck–boost 
converter which were presented.   
The authors [8-14] have designed a different  control model and implementation has been made 
to regulate DC–DC converter by using a digital signal processor (DSP TMS320C50). 
Different control technologies were used to control DC–DC converter using a microcontroller 
and an extra specialized hardware proposed a FLC that uses an optimal algorithm, and they     
have given experimental results. 
Design of fuzzy logic has been applied to a broad variety of engineering problems, particularly 
those having nonlinear dynamics [15]-[20]. Fuzzy logic controllers have been implemented as 
embedded controllers for frequency controlled induction motor drives. Numerous electric motor 
drive problems have been solved using fuzzy principles [21]-[23]. Studies have also 
recommended utilizing FLC in situations where (1) there is no precise mathematical model for 
the plant and (2) there are experienced human operators who can satisfactorily control the plant 
and provide qualitative control rules in terms of vague and fuzzy sentences. 
There are many practical situations where both (1) and (2) are true. 
Furthermore, corresponding authors made their effort in the design of Fuzzy Logic Controllers   
and demonstrated some difficulties in the selection of optimized membership functions and fuzzy 
rule base, which is traditionally achieved by a tedious trial-and-error process.                                                                          
This paper is a synthesis of works by [ 10,15,16,21,22 ] and introduces a systematic approach      
to  construct FLC for DC–DC converters as a part of Maximum Power Point Tracing system of 
Photovoltaic station to adapt to photovoltaic modules under varying operating conditions and  
the nonlinear properties of DC-DC power converters.  
The modified FLC (MFLC) optimizes membership functions and rule base of the FLC were 
obtained from training data in the pattern file. 
An MFLC approach is general in the sense that it is almost the same control rules can be applied 
to other applications [21].  
 
 
2. Fuzzy logic controller 
In recent years, there has been increasing interest in the  development of  efficent control   
strategies    to  improve  dynamic behavior of DC–DC converters by using fuzzy logic  controller 
(FLC), neural networks (NN), and neuro-fuzzy   controller or adaptive fuzzy logic controller 
(AFLC) - have been used to control  buck, boost and buck–boost converter were presented.    
The authors [10,11,17] have designed a different control model and implementation has been 
made to regulate DC–DC  converter by using a digital signal processor (DSP TMS320C50).                                    
Different control technologies were used to control DC–DC converter using a microcontroller 
and extra specialized hardware have  proposed  an  FLC that uses an optimal algorithm, and they 
have given experimental results.  
Design of fuzzy logic has been applied to a broad variety of engineering problems, particularly 
those having nonlinear dynamics. Fuzzy logic controllers have been implemented as embedded 
controllers for frequency controlled induction motor drives. Numerous electric motor drive 
problems have been solved using fuzzy principles [ 22,23,24 ]. Researches have also proposed to 
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 Use the FLC in situations where it could be useful in (1) there is no precise mathematical model 
for the plant and (2) there are experienced human operators who can satisfactorily control the 
plant and provide qualitative control rules in terms of vague and fuzzy sentences. 
 
The use of fuzzy logic control has become popular over the last decade because it can deal with 
imprecise inputs, does not need an accurate mathematical model and can handle nonlinearity. 
Microcontrollers have also helped in the popularization of fuzzy logic control. [5] 
The implementation of fuzzy logic is used to have a faster controller response and to increase 
system stability once reached the MPP. The tracking of the MPP will be divided into two phases: 
the first phase is of tough research, with a significant step to improve the response of the MPPT 
controller, the second one is the fine phase where the step is very small, thus ensuring the system 
stability and decrease the maximum oscillations around the MPP. This feature of the fuzzy 
controller demonstrates its effectiveness and makes it among the best MPP tracking devices.  
 
The fuzzy controller consists of three blocks: the Fuzzification of input variables which is 
performed in the first block, it allows the passage from the real domain to fuzzy domain. The 
second block is devoted to inference rules, while the last block is the Defuzzification for 
returning to the real domain. This last operation uses the center of mass to determine the value of 
the output [16]. 
The FLC block diagram to control DC-DC power converter in MPPT system of PVS is presented 
in Fig.1.        
    

  
 Fig.1 The basic structure of the Fuzzy Logic Controller 
 
Corresponding authors made their effort in design of Fuzzy Logic Controllers and demonstrated   
some  difficulties  in  the  selection  of  optimized  membership  functions  and  fuzzy  rule  base,  
which is traditionally achieved by a tedious trial-and-error process.   
The modified FLC (MFLC) optimizes membership functions and rule base of  the  FLC were  
obtained  from  training  data  in  the  pattern  file. 
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The inputs of Fig.1 of the FLC are the error e and difference of error de respectively and they are 
defined as  
          e  =Uref  -   U0                                       (4)  
  de(k) = e(k) - e(k-1)       (5)  
 
Where Uref    is reference output voltage, U0  is actual output voltage of DC–DC converter  at  the 
kth sampling time. 
The output of the FLC is a change in duty  ratio  (du(k)).  
Duty  ratio d(k), at the kth sampling time, is defined as: 

d(k) = d(k-1) + du(k)        (6) 
Knowing that, the output of the controller then sends through PWM out to DC-DC converter to 
generate desired switching action (Fig.5). 
 
Shrinking-span membership functions algorithm is used to construct membership functions for 
FLC. Then the result of (5) is send through the PWM controller to DC–DC converter to generate 
desired switching action.  By using this method the designer of an FLC assigns only the number 
of elements of term set and shrinking factor.   
In fact, the shrinking-span membership functions [16] (SSMF) is constructing membership 
functions method for FLC which, in compare to [21], generates a series of orderly arranged  
membership functions A(xi)s in the FLC for a linguistic variable across its universe of discourse. 
For example [16], widely used trapezoidal family SSMF is showing on Fig.6 for the   
membership number of linguistic variables m=3, shrinking factors s=0.65 and overlapping b=1.  
In case when shrinking factor is chosen one, the membership functions have equal span .Using 
various shrinking factors to the same linguistic variable, different membership function obtained 
to examine which is the most suitable for a specific application process. 
The overlapping factor has range [0,1] and increases monotonously as b increases. 
It is clear that there is no overlap between SSMF and if b=1 the supports for the SSMF have 
proper overlapping region. 
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   Figure 2- The family of the membership functions. 
 
If shrinking factors is chosen one (s = 1), the membership    functions     have    equal    span.    
By applying various shrinking factors to the same linguistic variable, deferent membership       
function obtained to examine which is the most suitable for a specific application process. Let us 
take that b is the overlapping factor whose reasonable range is [0, 1]. In our case we will 
consider that b can take values greater than unity as long as we as experts consider that resultant 
membership functions are rational in applications. The overlapping region increases 
monotonously as b increases. For b = 0 it is clear that there is no overlap between the SSMFs.  
Diversity of b is shown in Fig.6 as B1, B2, and B3. Consider B=1 the supports for the SSMFs 
have proper overlapping region. 
For a Mamdani-type FLC   [21], fuzzy rules are in the form:  
  Ri  : IF e is Ai  and de is Bi  THEN duk   is Ci, where Ai and Bi are fuzzy subsets in their   
universe of discourse and Ci  is a fuzzy singleton.  
Each universe of discourse is divided into seven (as an example; for more information see [ 22] 
fuzzy subsets: PB (Positive Big), PM (Positive Medium), PS (Positive Small), ZE  (Zero), NS    
(Negative Small), NM (Negative Medium) and NB (Negative Big). 
The rule base of the FLC is created the way to make it easy to obtain membership functions with 
index representation method. 
Table 1 illustrates the index representation of a simple rule mapping for m1 = m2 = 3 and the 
FLC has two inputs, single output 
By naming the numbered symbols (0 ? Zero, 1 ? Positive Small, 2 ? Positive Medium. . ., 1 ? 
Negative Small, 2? Negative Medium. . .), one can recognize anti-diagonal rule base proposed by 
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number of authors [18,20,21]. Table 2 illustrates the linguistic labels representation of the control 
rule table.  
The inference result of each rule consists of two parts of weighting factor, wi, of the individual 
rule, and degree of change in duty ratio Ci, according to the rule. The weighting factor wi  is  
obtained by means of Mamdani’s MIN  fuzzy  implication of  membership degrees µe(e)  and 
µde(de). Ci  is retrieved from control rule table.  As a result the inferred output of each rule using 
Mamdani’s MIN fuzzy implication is given as  

 
where  denotes the fuzzy representation of change in duty ratio inferred by the i-th rule.        
 
            Table 1 
             Simple rule mapping with index representation 

elde -3 -2 -1 0 1 2 3 
3 0 1 2 3 4 5 6 
2 -1 0 1 2 3 4 5 
1 -2 -1 0 1 2 3 4 
0 -3 -2 -1 0 1 2 3 
-1 -4 -3 -2 -1 0 1 2 
-2 -5 -4 -3 -2 -1 0 1 
-3 -6 -5 -4 -3 -2 -1 0 

             

            Table 2                                                                                                                                         
The linguistic labels representation of rule base 

                     

 

  

 

 
 
 
The results above results were received as linguistic results therefore we must employ next a 
defuzification operator to obtain a crisp result. Among others we prefer center of gravity method                                                                                                                                                                                                                  
for defuzzification Z is equal to du where Z or du is the result of change in duty ratio du.    
 
 

elde NB NM NS ZE PS PM PB 
PB ZE PS PM PB PB PB PB 
PM NS ZE PS PM PB PB PB 
PS NM NS ZE PS PM PB PB 
ZE NB NM NS ZE PS PM PB 
NS NB NB NM NS ZE PS PM 
NM NB NB NB NM NS ZE PS 
NB NB NB NB NB NM NS ZE 
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3. Modernized algorithm for the fuzzy logic controller 
MFLC, which is discussed in this paper, is an ordinary FLC with a modernized (adaptation) 
algorithm. Thus, MFLC adapts membership functions and computes the consequent parts of 
rules in the rule base. The inputs of MFLC are model data in the pattern file that is created from 
some expert knowledge data for desired output. The outputs of the controller are membership 
functions and the consequent parts for the controller. The MFLC updates its parameters (which 
are membership function’s shrinking factors) Se, S de and Su according to the pattern file, by 
using modified algorithm.  
Finally, application of this adaptation algorithm can be accepted as adaptation of parameters as 
well as the training data in the pattern file. 
The implementation of the MFLC is made for boost, buck, and buck–boost converters as part of 
the MPPT system. The circuit components and parameters of these converters can be found in 
[21,22]. It has two inputs and one output. Number of Antecedent membership functions for 
inputs and output can be in range of 5 or 7, as it is shown in [22]. Thus the rule base has 49 
outputs. The output of rules du is the change of duty ratio. 
At the first, the pattern file is to be prepared. It contain of three vectors which are error e, 
difference error de and change of duty ratio du. Each variable vector contains a number of 
sample data or by another words the number of training data in the pattern file. 
The MFLC algorithm described above can be implemented on a number of devices. We will 
consider implementation on a ST52E420 microcontroller, which is an 8-bit microcontroller and 
the erasable EPROM version, which has 4 Kbytes program and data EPROM.  This model has 
been chosen to perform, in an efficient way, both Boolean and fuzzy algorithms, in order to reach 
the best performances that the two methodologies allow. The schematic diagram of the controller 
circuit is illustrated in Fig. 7. 
This microcontroller has another important role in allowing describing a problem using a 
linguistic model instead of mathematical model. The microcontroller includes an 8-bit sampling 
(A/D) converter with an 8 analog channel fast multiplexer and 2.5 reconfigurable digital ports in 
order to transfer data from/to the on-chip Register Files. A three independent PWM/Timers are 
included allows managing directly power devices and high frequency PWM controls. 
6 FUZZY COMPUTATION (DP) 
The ST52T410/ST52x420 Decision Processor 
(DP) main features are: UNLIMITED number of Rules and Fuzzy Blocks. The limits on the 
number of Fuzzy Rules and Fuzzy program blocks are only related to the Program/Data Memory 
size. 
■ Up to 8 Inputs with 8-bit resolution; 
■ 1 Kbyte of Program/Data Memory available to store more than 300 to Membership Functions 
(Mbfs) for each Input; 
■ Up to 128 Outputs with 8-bit resolution; 
■ Possibility of processing fuzzy rules with an UNLIMITED number of antecedents; 
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■ UNLIMITED number of Rules and Fuzzy Blocks.  
The limits on the number of Fuzzy Rules and Fuzzy program blocks are only related to the 
Program/Data Memory size. 
Fuzzy Inference. The block diagram shown in Figure 3 describes the different steps performed 
during a Fuzzy algorithm. The ST52T410/ST52x420 Core allows for the implementation of a 
Mamdani type fuzzy inference with crisp consequents. Inputs for fuzzy inference are stored in 8 
dedicated Fuzzy input registers. The LDFR instruction is used to set the Input Fuzzy registers 
with values stored in the Register File. The result of a Fuzzy inference is stored directly in a 
location of the Register File. 
In Fuzzyfication  phase the intersection (alpha weight) between the input values and the related 
Mbfs    (Fig.4) is performed. Eight Fuzzy Input registers are available for Fuzzy  inferences. 
 

 
 
Figure 3- Fuzzy Inference 

 



9 
 

 
  

Figure 4- Alpha Weight Calculation 
After loading the input values by using the LDFR assembler instruction, the user can start the 
fuzzy inference by using the FUZZY assembler instruction. During fuzzyfication input data is 
transformed in the activation level (alpha weight) of the Mbf’s. 
The Inference Phase manages the alpha weights obtained during the fuzzyfication phase to 
compute the truth value (ω) for each rule. This is a calculation of the maximum (for the OR 
operator) and/or minimum (for the AND operator) performed on alpha values according to the 
logical connectives of Fuzzy Rules (Fig.5). Several conditions may be linked together by 
linguistic connectives AND/OR, NOT operators and brackets. 
The truth value ω and the related output singleton are used by the Defuzzyfication phase, in 
order to complete the inference calculation. 
Defuzzyfication. In this phase the output crisp values are determined by implementing the 
consequent part of the rules. Each consequent Singleton Xi is multiplied by its weight values ωi, 
 calculated by the Decision processor, in order to compute the upper part of the Defuzzyfication 
formula. 
Each output value is obtained from the consequent crisp values (Xi) by carrying out the 
following Defuzzyfication formula 
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Figure 5- Fuzzyfication. 
 
Y_i=(∑_i^N▒〖X_ij ω_ij 〗)/(∑_j^N▒ω_ij )    
Y_i=(∑_i^N▒〖X_ij ω_ij 〗)/(∑_j^N▒ω_ij )    
 
where: 
i = identifies the current output variable, 
N = number of the active rules on the current output, 
 ω_ij  = weight of the j-th singleton, 
X_ij  = abscissa of the j-th singleton. 
The Decision Processor outputs are stored in the RAM location i-th specified in the assembler 
instruction OUT. 
 Input Membership Function. The Decision Processor allows the management of 
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triangular Mbfs. In order to define an Mbf, three different parameters must be stored on the 
Program/Data Memory (see Figure 6):   

 
 

Figure 6- Mbfs Parameters. 
 
■ the vertex of the Mbf: V; 
■ the length of the left semi-base: LVD; 
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■ the length of the right semi-base: RVD; 
In order to reduce the size of the memory area and the computational effort the vertical range of 
the vertex is fixed between 0 and 15 (4 bits). 
By using the previous memorization method different kinds of triangular Membership Functions 
may be stored. Figure 7 shows some examples of valid Mbfs that can be defined in 
ST52T410/ST52x420.  

 
  
Figure 7- Some examples of valid Mbfs, that can be defined in ST52T410/ST52x420. 
 
Each MBF is then defined storing 3 bytes in the first Kbyte of the Program/Data Memory. 
The Mbf is stored by using the following instruction: 
MBF   n_mbf lvd v rvd 
where: 
N_mbf is a tag number that identifies the Mbf lvd; 
Lvd, v and rvd are the parameters that describe the Mbf”s shape as describe above. 
Output Singleton 
The Decision Processor uses a particular kind of membership function called Singleton for its 
output variables. A Singleton doesn’t have a shape, like a traditional Mbf, and is characterized by 
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a single point identified by the couple (X, w), where w is calculated by the Inference Unit as 
described earlier. Often, a Singleton is simply identified with its Crisp Value X, Fig.8. 

: 
  

 Figure 8- Output Membership Functions. 
 
Fuzzy Rules 
Rules can have the following structures: 
 If  A op B op C...........then Z 
If  (A op B) op (C op D op E...) ...........then Z 
where op is one of the possible linguistic operators (AND/OR). 
In the first case the rule operators are managed sequentially; in the second one, the priority of the 
operator is fixed by the brackets. 
Each rule is codified by using an instruction set, the inference time for a rule with 4 antecedents 
and 1 consequent is about 3 microseconds at 20 MHz. 
The Assembler Instruction Set used to manage the Fuzzy operations is reported in 
 the table ST52T410/ST52x420. 
 
.  
 

Conclusion 
In this paper, a modernized  fuzzy logic controller was introduced for DC–DC converter output 
voltage regulation in MPPT system in PhV station and have implemented on an 8-bit 
microcontroller. The MFLC is able to regulate the output voltage of buck, boost and buck–boost 
converters to desired value despite change in load. Since these converters, buck, boost and buck–
boost, are controlled using the same MFLC algorithm without any modifications to 
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microcontroller program. This shows that the proposed algorithm is general and can be applied 
to any DC–DC converter topologies practically. 
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	Input Membership Function. The Decision Processor allows the management of
	triangular Mbfs. In order to define an Mbf, three different parameters must be stored on the
	Program/Data Memory (see Figure 6):
	Figure 6- Mbfs Parameters.
	■ the vertex of the Mbf: V;
	■ the length of the left semi-base: LVD;
	■ the length of the right semi-base: RVD;
	In order to reduce the size of the memory area and the computational effort the vertical range of the vertex is fixed between 0 and 15 (4 bits).
	By using the previous memorization method different kinds of triangular Membership Functions
	may be stored. Figure 7 shows some examples of valid Mbfs that can be defined in ST52T410/ST52x420.
	Figure 7- Some examples of valid Mbfs, that can be defined in ST52T410/ST52x420.
	Each MBF is then defined storing 3 bytes in the first Kbyte of the Program/Data Memory.
	The Mbf is stored by using the following instruction:
	MBF   n_mbf lvd v rvd
	where:
	N_mbf is a tag number that identifies the Mbf lvd;
	Lvd, v and rvd are the parameters that describe the Mbf”s shape as describe above.
	Output Singleton
	The Decision Processor uses a particular kind of membership function called Singleton for its output variables. A Singleton doesn’t have a shape, like a traditional Mbf, and is characterized by a single point identified by the couple (X, w), where w i...
	:
	Figure 8- Output Membership Functions.
	Fuzzy Rules
	Rules can have the following structures:
	If  A op B op C...........then Z
	If  (A op B) op (C op D op E...) ...........then Z
	where op is one of the possible linguistic operators (AND/OR).
	In the first case the rule operators are managed sequentially; in the second one, the priority of the operator is fixed by the brackets.
	Each rule is codified by using an instruction set, the inference time for a rule with 4 antecedents and 1 consequent is about 3 microseconds at 20 MHz.
	The Assembler Instruction Set used to manage the Fuzzy operations is reported in
	the table ST52T410/ST52x420.
	.



