

Рисунок 3 – Эффективная и затраченная удельные тепловые мощности

УДК 621.81.:621.337 АЛГОРИТМ КОНЕЧНО-ЭЛЕМЕНТНОЙ МОДЕЛИ ЭЛЕКТРОКОНТАКТНОГО СПЕКАНИЯ

Г.Г. Горанский², А.И. Поболь ¹Научно-технологический парк БНТУ «Политехник», ²Физико-технический институт НАН Беларуси

Учет структурных изменений порошкового материала при электроконтактном спекании (ЭКС) и вытекающих из этого изменений его механических свойств выполнялся методом многошагового моделирования в соответствии с блок-схемой (рис. 1).

Рисунок 1 – Блок-схема адаптивного изменения механических свойств порошка

Тестовый объект моделирования – цилиндрическая втулка (рис. 2,*a*), формируемая двусторонним сжатием в матрице с центральным стержнем (рис. 2,*б*,*в*). Модель параметрическая – высота H, внешний и внутренний диаметры D и d, а также число слоев прессовки (рис. 2,*г*) задаются на начальной стадии моделирования.

Рисунок 2 – Тестовый объект (a), структура модели в исходном (δ) и терминальном (ϵ) состояниях, многослойная модель дисперсного тела (ϵ)

Для снижения вычислительных ресурсов модели принят ряд упрощений (рис. 3). Вместо цилиндра в расчетах используется только верхняя половина сектора (рис. 3,*a*). Для узлов на боковых плоскостях сектора опре делено условие «симметричность» (рис. 3,*b*), что обеспечивает целостность модели. Матрица и центральный стержень представлены поверхностными (из элементов типа «shell») моделями стенок (рис. 3,*b*). Для узлов этих моделей ограничены все степени свободы, что делает их полностью недеформируемыми. Пуансоны в модели отсутствуют. Вместо них – соответствующие граничные условия (рис. 3,*c*). Узлам верхней грани сообщается перемещение, либо прикладывается давление. К ним приложен электрический потенциал. Для «нижних» узлов определено граничное условие «симметричность». Их электрический потенциал равен «0».

Рисунок 3 - Конечно-элементная модель и граничные условия

Комплексную оценку адекватности модели предоставляет кривая прессуемости (рис. 4). Зависимость для расчетной модели близка к экспериментальной, т.е. аналитическая модель уплотнения порошка согласуется с результатами реального процесса ЭКС.

Рисунок 4 – Кривая прессуемости: *а* – экспериментальная, *б* – расчетная

УДК 519.22

МАТЕМАТИЧЕСКОЕ ПРОГНОЗИРОВАНИЕ ТРАНСПОРТНОЙ ПРЕСТУПНОСТИ В РОССИИ

Л.М. Груздева Российский университет транспорта (МИИТ)

По аналитическим материалам портала правовой статистики генеральной прокуратуры Российской Федерации в 2019 г. было зарегистрировано наименьшее с 2013 г. [1] число преступлений на объектах транспорта – 36 153. Вместе с тем в 2019 г. выявлено 20 650 лиц, совершивших преступления на транспорте, что на –3,3 % меньше, чем в 2018 г. и является наименьшим с 2013 г. (–19,0 %).

Научно обоснованные прогнозы о будущем состоянии преступности на объектах транспорта Российской Федерации являются базой для подготовки органами внутренних дел планов мероприятий противодействия преступности на предстоящий период, принятия соответствующих нормативных и правовых решений, разрешения вопросов организационного, материально-технического, финансового, кадрового и т.д. обеспечения правоохранительной практики [2].

Для прогноза числа преступлений на транспорте были построены аппроксимирующие функции (регрессии) на основе метода наименьших квадратов. В табл. 1 представлены данные о числе транспортных преступлений за 2013–2019 гг., а также составлен прогноз на 2020–2021 гг.

Верификация моделей проводилась путем сопоставления предсказанных и полученных результатов за прошедшие периоды. В частности, максимальная относительная погрешность прогноза числа преступлений по модели с линейным трендом – 5,1 %. Наиболее оптимистичный прогноз по числу транспортных преступлений был получен с помощью модели с кубическим трендом: снижение на –5,3 % в 2020 г. и на –15,5 % в 2021 г.

<u></u>				
Год	Число	Линейный	Кубический	Логарифмический
	зарегистрированных	тренд	тренд	тренд
	преступлений			
2013	42 029	41 542	42 185	42 247
2014	40 353	40 720	40 350	40 442
2015	40 556	39 897	39 364	39 386
2016	37 181	39 075	38 857	38 637
2017	38 647	38 252	38 458	38 056
2018	38 605	37 429	37 799	37 581
2019	36 153	36 607	36 509	37 180
2020	?	35 784	34 219	36 832
2021	?	34 962	30 558	36 525

Таблица 1 – Динамика преступности на транспорте в России за 2013–2021 гг.