УДК 691

Е.Е. Шалый¹, С.Н. Леонович², Л.В. Ким¹, Т.Е. Шалая¹

¹Дальневосточный федеральный университет, г. Владивосток, Россия ²Белорусский национальный технический университет, г. Минск, Белоруссия

МОДЕЛЬ ХЛОРИДНОЙ ДЕГРАДАЦИИ МОРСКИХ БЕТОННЫХ КОНСТРУКЦИЙ

Аннотация: Одним из условий долговечности морских сооружений является соответствие свойств материала конструкций природно-климатическим условиям района строительства. В статье приведены результаты исследований хлоридной деградации портовых сооружений о. Сахалин. Данные собраны при проведении контрольно-инспекторских обследований 8 причалов в портах Холмск и Корсаков. Определены причины и следствия коррозионного разрушения, рассчитаны вероятностные значения глубин проникновения хлоридов и карбонизации в зоне переменного уровня воды. Сравнение расчетных и измеренных величин показало хорошее соответствие.

Хлорид-индуцированная факторов коррозия является ОДНИМ долговечности бетонных конструкций. Дезактивация снижения арматуры увеличивает коррозию, и соответственно уменьшает сечение, т.е. несущую способность арматуры. Сопротивление хлоридной агрессии зависит от проницаемости бетона и толщины защитного слоя. Хлориды поступают из морской воды (электролит) путем капиллярной транспортировки или ионной диффузии. Кислотные электролиты нейтрализуют нормальное щелочное состояние бетона (рН>12,6), разрушают пассивную оксидную пленку на поверхности арматуры (рис. 1).

Рис. 1. Коррозия бетона лицевой стенки причала в порту Холмск [4] Данный процесс формирования электрохимических ячеек на поверхности арматуры называется депассивацией (рис. 2).

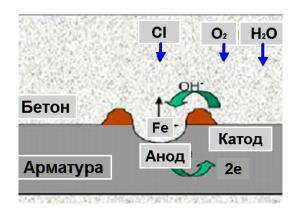


Рис. 2. Электрохимическая ячейка на поверхности арматуры

Уравнение реакции

$$Fe^{2+} + 2Cl^{-} \rightarrow FeCl_{2} \tag{1}$$

$$FeCl_2 + 2H_2O \rightarrow Fe(OH)_2 + 2HCl \tag{2}$$

Пассивированная область становится анодом, а пассивированная поверхность становится катодом

$$Fe \to Fe^{2+} + 2e^- \tag{3}$$

$$Fe^{2+} + 2(OH)^{-} \to Fe(OH)_{2}$$
 (4)

$$4Fe(OH)_2 + 2H_2O + O_2 \rightarrow 4Fe(OH)_3$$
 (5)

и реакция на катоде протекает следующим образом

$$2e^- + O_2 + 2H_2O \to 4(OH)^-$$
 (6)

Продукты коррозии в (4) и (5) значительно увеличиваются в объеме (до 6 раз), и вызывают растрескивание, расслаивание и отслаивание защитного слоя бетона. Процесс зависит от следующих факторов: коэффициента диффузии, концентрации хлоридов и критического уровня хлоридов [1-10]. Известно, что долговечность бетонной конструкции зависит больше от глубины защитного слоя, чем от коэффициента диффузии, и более от концентрации хлорида, чем от уровня хлоридов. Высокая влажность в бетоне может уменьшить диффузию кислорода до области коррозии и замедлить коррозию арматуры, в то время как нехватка воды снижает коррозионную активность (концентрации 0,4% по массе сухого цемента).

Диффузионное моделирование хлоридного раствора в бетоне получило развитие в 70-х годах [5]. После того, как критическое «пороговое» содержание хлорида достигает стали, разрушает ее пассивную оболочку, сталь начинает растворяться. Ионы растворенного железа реагируют с образованием продуктов коррозии, что вызывает растрескивание бетона. Использована модель деградации DuraCrete [5], основанная на концепции переноса хлорида в бетон путем диффузии и инициирования арматурной коррозии при превышении содержания активного хлорида на поверхности стали. Модель DuraCrete включает в себя формулировку предельного

состояния для инициирования коррозии, вызванной хлоридом, которая упрощается путем указания того, что отказ (то есть инициирование коррозии) происходит при

$$C > Ccrit,$$
 (7)

где С - содержание хлорида на поверхности армирования; *Ccrit* - критическое содержание хлорида.

Критическое содержание хлорида является сложной функцией величин рН, объемов воды и кислорода, наличия пустот. Значение 0,4% хлоридного иона по массе цемента считается лучшим средним значением. Содержание хлорида в стали является зависимой от времени функцией

$$C_x = C_{sn} \left[1 - erf \frac{x}{2\sqrt{D_a(t)t}} \right], \tag{8}$$

где C_x — содержание хлоридов на некоторой глубине в % от массы цемента; C_{sn} — поверхностное содержание хлоридов в % от массы цемента; x — глубина проникновения хлоридов, м; t — время воздействия, c; $D_a(t)$ — коэффициент диффузии хлоридов, м²/с.

Применение модели DuraCrete к практическим случаям является относительно новым. Исходными параметрами являются измеренное значение коэффициента диффузии 28-суточного бетона, а также содержание хлоридов на поверхности, глубина защитного слоя и их статистическое распределение. Polder R.B. [7] предложил два отклонения от модели DuraCrete и ее входных параметров. Одно отклонение касается коэффициента окружающей среды. Первоначальный расчет включает в себя тип цемента, окружающую среду и продолжительность периода твердения.

Gehlen [6] предложил коэффициент окружающей среды для бетона в морской среде, основанный только на температуре, которая использована нами применительно к морской среде эксплуатации

$$K_C = exp\left[b_e\left(\frac{1}{T_{ref}} - \frac{1}{T_e}\right)\right] \tag{9}$$

где b_e - параметр регрессии; T_{ref} - эталонной температуры; T_e - среднегодовой температуры воздуха.

Им предложено отклонение относительно значения показателя старения 0,45 [11], учитывая, что для цементного бетона оно находится в пределах 0,6-0,8. Polder [7] назвал данную модификацию модели DuMaCon. Авторы провели верификацию модели на примере железобетонных конструкций причалов в портах Холмск и Корсаков. Бетон на сульфатостойком портландцементе с В/Ц=0,4 и расходом 450 кг/м³, толщиной защитного слоя 5 см. Результаты вероятностного расчета при сроке службы 40 лет см. табл. 1. Результаты вероятностного расчета сравнивались с измеренными величинами (табл. 2).

Таблица 1. Результаты вероятностного расчета

Конструкция	Период эксплуатации	X, m	Содержание хлора, %
Зона переменного уровня	40 лет	10	0,293

20	0,220
30	0,165
40	0,120
50	0,079

Таблица 2. Результаты обследования прибрежных конструкций о. Сахалин

							онструкции о. Сахалин
Элемент	Порт	Год	Цем.	Класс	Cl, %	h, см	Фото
Причаль	Холмск	1980	Портл	XS3	0,149	1-10	
ная			андце		0,085	10-30	
стенка			мент		0,082	30-50	01/15/07/06
Причаль	Корсаков	1981	Портл	XS3	0,162	1-10	
ная			андце		0,094	10-30	
стенка			мент		0,080	30-50	60 No. 100 No.
Пешехо	Холмск	1983	Портл	XS3	0,200	1-10	
дная			андце		0,115	10-30	
эстакада (колонн а)			мент		0,069	30-50	
Пешехо	Холмск	1983	Портл	XS3			
дная эстакада (плита)			андце мент		0,253	1-10	
					0,241	10-30	
					0,089	30-50	THE PARTY NAMED IN
Надстро	Холмск	1980	Портл	XS3	0,310	1-10	
йка			андце		0,254	10-30	
пирса			мент				
					0,012	30-50	27(5)(47)1-(4735-04
Надстро	Корсаков	1981	Портл	XS3	0,420	1-10	
йка			андце		0,260	10-30	
пирса			мент		0,013	30-50	

Результаты исследования показали, что используя данные вероятностного моделирования, можно относительно точно рассчитать срок службы бетона.

- 1. Леонович С.Н. Алгоритм расчета долговечности железобетонных конструкций при хлоридной агрессии // Перспективы развития новых технологий в строительстве и подготовке кадров Республики Беларусь: сб. тр. VII междунар. науч.-методич. семинара. Брест, БрГТУ, 2001. С. 432-435.
- 2. Леонович С.Н. Вероятностная оценка коррозии арматуры в существующих железобетонных конструкциях при хлоридной агрессии // Перспективы развития новых технологий в строительстве и подготовке кадров Республики Беларусь: сб. тр. VII междунар. науч.-методич. семинара. Брест, БрГТУ, 2001. С. 435-440.
- 3. Розенталь Н.К. О максимально допустимом содержании хлоридов в бетоне // Строительные материалы. 2017. С. 82-84.
- 4. Отчет по инженерно-экологическим изысканиям в Холмском морском торговом порту. Владивосток: ООО «ПриМорПроектБюро», 2015.
- 5. DuraCrete. Models for Environmental Actions on Concrete Structures // BE95-1347/R3, Project BE95-1347. Gouda, 1999.
- 6. Gehlen C. Probabilistische Lebensdauerbemessung von Stahlbetonbauwerken, Deutscher Ausschuss for Stahlbeton, 510, Berlin, 2000.
- 7. Polder R.B., Visser J. Redistribution of chloride in blended cement concrete during storage in various climates // 3rd RILEM Workshop Testing and Modelling Chloride Ingress into Concrete. Eds C. Audrade, J. Kropp, 2004.