БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ энергетический КАФЕДРА Тепловые электрические станции

ДОПУЩЕН К ЗАЩИТЕ

Заведующий кафедрой

Н.Б. Карницкий

2022 г.

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА ДИПЛОМНОГО ПРОЕКТА

Проект промышленно-отопительной ТЭЦ-270 МВт

Специальность 1- 43 01 04 Тепловые электрические станции

05		
Обучающийся группы 30604116	31.05.22	Е.В. Усов
TPyllina 5000 TTO	подпись, дата	Libi v cob
Руководитель	10001 302.22 подпись, дата	И.Н. Барановский зав. теплотехническим отделом РУП «Белнипи энергопром»
Консультанты:	11 ,	
по разделу «Экономическая часть»	MCN 1.06,22.	В.Н. Нагорнов
	подпись, дата	к.э.н., доцент
по разделу «Водно-химический комплекс ТЭС»	Marx 01.06.22	В.А. Романко
	подпись, дата	ст. преподаватель
по разделу «Автоматизация технологических	Office and	
процессов и АСУ ТЭС»	подпись, дата	Г.Т. Кулаков д.т.н., профессор
	(1) -31 AS. 2>	
по разделу «Электрическая часть ТЭС»	полнись, дата	А.Г. Губанович к.т.н., доцент
	Nes 31.05-2012	
по разделу «Охрана окружающей среды»	подпись, дата	Н.Б. Карницкий д.т.н., профессор
	Jeel 31.05.2022	
по разделу «Охрана труда»	Оподпись, дата	Л.П. Филянович к.т.н., доцент
	She 8.0622	
Ответственный за нормоконтроль	подпись, дата	Г.В. Крук заведующий
	Troubles, parts	лабораториями
		кафедры ТЭС ЭФ
Объем проекта:		
расчетно-пояснительная записка - страни	щ;	
графическая часть листов;		
магнитные (цифровые) носители единиц		

РЕФЕРАТ

Дипломный проект: 162 с., 64 рис., 31 табл., 45 источников ТЭЦ, ТУРБИНА, ПАРОВОЙ КОТЕЛ, ГРАДИРНИ, МОДЕРНИЗАЦИЯ

Целью настоящего дипломного проекта является проектирование промышленно-отопительной ТЭЦ мощностью 270 MBт.

В процессе проектирования выполнены следующие исследования: выбрано и экономически обосновано основное оборудование станции; рассчитана принципиальная тепловая схема энергоустановки; произведён укрупнённый тепловой расчёт котлоагрегата; на основании произведенных расчётов выбрано вспомогательное оборудование турбинного и котельного цехов; описаны основные характеристики топливного хозяйства ТЭЦ; выбрана оптимальная схема водоподготовки и водно-химический режим; произведен расчет величин токов короткого замыкания и в соответствии с ними выбраны электрические аппараты ТЭЦ; выбраны и описаны основные подсистемы АСУ ТП ТЭС; в разделе охрана окружающей среды выполнены расчёты вредных выбросов при работе станции на основном и резервном топливе, определена высота дымовой трубы; рассмотрен ряд вопросов по охране труда на ТЭЦ; описаны основные решения компоновки главного корпуса и генерального плана станции.

В качестве специального задания рассмотрены проблемы эксплуатации функциональных элементов систем оборотного технического водоснабжения, проанализированы конструкции применяемых тепломассообменных устройств, их недостатки и влияние на охлаждающую способность градирни; рассмотрен метод снижения аэродинамических потерь в градирне путем формирования структурированного покрытия на ее внутренней поверхности; проанализированы льдообразовательные процессы на элементах градирен; рассмотрены подходы к защите градирен от наледи в областях входа и выхода воздуха на основании промышленного эксперимента и расчетно-теоретических исследований.

Приведенный в дипломном проекте расчетно-аналитический материал объективно отражает состояние исследуемого процесса (разрабатываемого объекта), все заимствованные из литературных и других источников теоретические и методологические положения и концепции сопровождаются ссылками на их авторов.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Нагорнов, В.Н. Организация производства и управление предприятием: методическое пособие по выполнению курсовой работы для студентов специальностей 1-43 01 04 «Тепловые электрические станции», 1-43 01 05 «Промышленная теплоэнергетика» / В.Н. Нагорнов, И.А Бокун. Минск : БНТУ, 2011. 68 с.
- 2. Тепловые и атомные электрические станции : справочник / под ред. А.В. Клименко, В.М. Зорина. 3-е изд., перераб. и доп. М. : Издательство МЭИ, 2003. Кн.3.-648 с.: ил.
- 3. Трухний, А.Д. Теплофикационные паровые турбины и турбоустановки : учебное пособие для вузов / А.Д. Трухний, Б.В. Ломакин. М. : Издательство МЭИ, 2002. 540 с.
- 4. Тепловые и атомные электрические станции: Дипломное проектирование: Учебное пособие для вузов / А.М. Леонков [и др.] Минск : Выш. школа, 1990. 336 с.
- 5. Седнин, В.А. Тепловые электрические станции. Расчет тепловой схемы и выбор вспомогательного оборудования : учебно-методическое пособие по выполнению курсового и дипломного проектирования / А.В. Седнин, П.Ю. Марченко, Ю.Б. Попова. Минск : БНТУ, 2007. 92 с.
- 6. Соловьев, Ю.П. Вспомогательное оборудование паротурбинных электростанций / Соловьев Ю.П М. : Энергоатомиздат, 1983. 200 с.
- 7. Тепловые электрические станции: учебник для вузов. 3-е изд. / В.Д. Буров [и др.]. М.: Издательский дом МЭИ, 2009. 466 с.
- 8. Жихар, Г.И. Котельные установки ТЭС: теплотехнические расчеты: учебное пособие / Жихар Г.И. Минск: Вышэйшая школа, 2017. 224 с.
- 9. Рихтер, Л.А. Вспомогательное оборудование тепловых электростанций: Учебное пособие для вузов / Л.А. Рихтер, Д.П. Елизаров, В.М. Лавыгин. М.: Энергоатомиздат, 1987. 216 с.
- 10. Карницкий, Н.Б. Электронный учебно-методический комплекс по учебной дисциплине «Вспомогательное оборудование электростанций» для специальности 1-53 01 04 «Автоматизация и управление теплоэнергетическими процессами» / Н.Б. Карницкий, Е.В. Пронкевич, С.А. Качан. Минск: БНТУ, 2018. 265 с.
- 11. CO 34.20.514-2005 «Методические указания по эксплуатации газового хозяйства тепловых электростанций».
- 12. Назмеев, Ю.Г. Мазутные хозяйства ТЭС / Назмеев Ю.Г. М.: Издательство МЭИ, 2002. 612 с.
- 13. СО 34.23.501-2005 Методические указания по эксплуатации мазутных хозяйств тепловых электростанций.
- 14. Водоподготовка и водно-химические режимы ТЭС и АЭС: учебнометодическое пособие по курсовому и дипломному проектированию для студентов специальностей 1-43 01 04 «Тепловые электрические станции», 1-43 01 08 «Паротурбинные установки атомных электрических станций» / В.А. Чиж [и др.] Минск: БНТУ, 2014. 83 с.

- 15. Справочник по теплообменникам. В 2 т. / пер. с англ. под ред. О.Г. Мартыненко и др. М.: Энергоатомиздат, 1987. 352 с.
- 16. Рожкова, Л.Д. Электрооборудование электрических станций и подстанций: учебник для студ. сред. проф. образования / Л.Д Рожкова, Л.К. Корнева, Т.В. Чиркова. 4-е изд., стер. М.: Издательский центр «Академия», 2007. 448 с.
- 17. Неклепаев, Б.Н. «Электрическая часть электростанций и подстанций: Справочные материалы для курсового и дипломного проектирования: Учеб. пособие для вузов. 4-е изд., перераб. и доп. / Б.Н Неклепаев, И.П. Крючков. М.: Энергоатомиздат, 1989. 608 с.
- 18. Методические указания к курсовому проектированию по дисциплине «Электрическая часть электрических станций и подстанций» для студентов специальностей: 1-43 01 01 «Электрические станции», 1-43 01 02 «Электроэнергетические системы и сети», 1-43 01 03 «Электроснабжение», 1-53 01 04 «Автоматизация и управление энергетическими процессами». Мн.: УП Технопринт. 2004. 135 с.
- 19. Плетнев, Г.П. Автоматизация технологических процессов и производств в теплоэнергетике: учеб. для студентов вузов / Г.П. Плетнев. 4-е изд., перераб. М.: Издательский дом МЭИ, 2007. 352 с.
- 20. Теория автоматического управления: учебно-методическое пособие для студентов специальностей 1-53 01 04 «Автоматизация и управление тепло-энергетическими процессами», 1-43 01 04 «Тепловые электрические станции», 1-43 01 08 «Паротурбинные установки атомных электрических станций», 1-53 01 01 «Автоматизация технологических процессов и производств» / Г.Т. Кулаков [и др.]; под общ. ред. Г.Т. Кулакова. Минск: БНТУ, 2017. 133 с.
- 21. Фрер, Ф. Введение в электронную технику регулирования / Ф. Фрер Ф. Орттенбургер. Издательство Энергия, 1973. 192 с.
- 22. Aidan, O'Dusyer. Handbook of PI and PID Controller Tuniny Rules / O'Dusyer Aidan. 3rd Edition. Dublin: Institute of Technology; Ireland, Imperial College Press, 2009. 529 p.
- 23. Теория автоматического управления теплоэнергетическими процессами: учеб. пособие / Г.Т. Кулаков [и др.]. Минск : Вышэйшая школа, 2017. 238 с.
- 24. Карницкий, Н.Б. Электронный учебно-методический комплекс по учебной дисциплине «Природоохранные технологии на ТЭС» для специальности 1-43 01 04 «Тепловые электрические станции» / Н.Б. Карницкий, В.А. Чиж, А.В. Нерезько. Минск: БНТУ, 2017. 331 с.
- 25. Беспалов, В.И. Природоохранные технологии на ТЭС: учебное пособие / В.И. Беспалов, С.У. Беспалова, М.А. Вагнер. Томск: Изд-во Томского политехнического университета, 2010. 240 с.
- 26. Лазаренков, А.М. Охрана труда в энергетической отрасли: учебник: 2-е изд., доп и перераб. / А. М. Лазаренков, Л. П. Филянович, В. П. Бубнов. Минск: ИВЦ Минфина, 2011. 672 с.

- 27. Абрамов, Н.Н. Водоснабжение: Учебник для вузов.- 3-е изд., перераб. и доп. / Абрамов Н.Н. М.: Стройиздат, 1982. 440 с.
- 28. Пономаренко, В.С. Градирни промышленных и энергетических предприятий: Справочное пособие / В.С. Пономаренко, Ю.И. Арефьев. М. : Энергоатомиздат, 1998. 376 с.
- 29. Волков, А.В. О повышении эффективности эксплуатации систем оборотного водоснабжения с башенными градирнями. Радиоэлектроника, электротехника и энергетика // Тез. докл. семнадцатой Междунар. науч.-техн. конф. студентов и аспирантов. М., 2011. Т.2.
- 30. Повышение энергоэффективности эксплуатирующихся центробежных насосов на основе модификации поверхности проточных частей / А.В. Волков [и др.]. // Труды Всероссийской научно-практической конференции «Повышение надежности и эффективности эксплуатации электрических станций и энергетических систем» ЭНЕРГО 2010. М.: Издательский дом МЭИ, 2010.
- 31. Рыженков, А.В. Исследование влияния поверхностно-активных веществ на гидравлическое сопротивление трубопроводов систем теплоснабжения и разработка способа снижения энергозатрат при транспортировке теплоносителя: Автореф. дис. на соиск. ученой степени кандид. техн. наук. / Рыженков А.В. М., 2008.
- 32. Александров, И.А. Массопередача при ректификации и абсорбции многокомпонентных смесей / Александров И.А. М.: Химия, 1975.
- 33. Пономаренко, В.С. Технологическое оборудование градирен / Пономаренко В.С. // Электрические станции. 1996. №11. С. 19-28.
- 34. Берман, Л.Д. Испарительное охлаждение жидкости при малых расходах и высоких начальных влажностях воздуха / Берман Л.Д. // "Известия ВТИ". 1990. № 1011. С. 17-23.
- 35. Ведьгаева, И.А. Математическое моделирование, исследование и повышение эффективности работы промышленных градирен с сетчатой насадкой: Автореф. дис. на соиск. ученой степени канд. техн. наук. / Ведьгаева И.А. К., 2003.
- 36. Колесников, С.В. Разработка способов повышения эффективности оборотных систем водоснабжения ТЭЦ с градирнями: Автореф. дис. на соиск. ученой степени канд. техн. наук / Колесников С.В. И., 2004.
- 37. Берман, ЈІ.Д. К определению коэффициента массоотдачи при расчете конденсации пара, содержащего примесь воздуха / Берман ЈІ.Д. // "Теплоэнергетика". 1969. N 10. С. 68-71.
- 38. Алексеев, В.П. Номограмма для расчета противоточных градирен / В.П. Алексеев, Э.Д. Пономарева, А.В. Дорошенко // Холодильная техника. 1970. № 12.
- 39. Гельфанд, Р.Е. Уточнение методики тепловых расчетов крупных башенных градирен / Гельфанд Р.Е. // Электрические станции №9. 1977. С. 23-24.

- 40. Влияние октадециламина на стационарный потенциал конструкционных материалов при повышенных температурах теплоносителя / И.Я. Дубровский [и др.] // «Теплоэнергетика» 7. 1999.
- 41. Броунштейн, Б.И. Гидродинамика, массо- и теплообмен в колонных аппаратах / Б.И. Броунштейн, В.В. Щеглов. Л.: Химия, 1988. 336 с.
- 42. Волков, А.В. Влияние дисперсности воды на теплообмен в градирне / А.В. Волков, Л.И. Селезнев, А.В. Наумов // Надежность и безопасность энергетики. 2013. №2(21). С. 50-52.
- 43. Сухов, Е.А. Определение коэффициентов тепло- и массоотдачи оросительных устройств градирен по опытным данным / Е.А. Сухов, Р.Е. Гельфанд // "Известия ВНИИГ". 1971. т. 96. С. 256-262.
- 44. Калатузов, В. А. Совершенствование систем технического водоснабжения с целью снижения ограничений мощности ТЭС / В.А. Калатузов // Промышленная энергетика. 2010. № 2. С. 2-9.
- 45. Наумов, А.В. Разработка методов совершенствования систем оборотного водоснабжения с башенными градирнями электростанций для увеличения выработки электроэнергии: Автореф. дис. на соиск. ученой степени канд. техн. наук / Наумов А.В. МЭИ., 2004.