

Рис. 1. Система управления лазерной установкой

Управляющие сигналы с параллельного порта компьютера 1 поступают в устройство комплексного управления лазерной установкой 2, которое в свою очередь осуществляет полное управление ходом процесса лазерной обработки материалов.

Использование разработанной системы управления лазерной установкой обеспечивает возможность быстрой оптимизации технологических режимов.

ЛИТЕРАТУРА:

1. Шалупаев, С.В., Шершнев, Е.Б., Никитюк, Ю.В. и др. Лазерное термораскалывание диэлектрических материалов // CERAMICS. POLISH CERAMIC BULLETIN. 2001. Vol. 65, P. 75 – 83.

2. Shalupaev, S. V., Ranachowski, J., Serdzyukov, A. N и др. Forming dynamics of temperature stress fields in the process of parallel thermosplitting // Instytut Podstawowych Problemow Techniki Polskiej AN Varshava. 1996, P 12 – 17.

УДК 681.2

Томашов И.Н.

К РАСЧЕТУ НАПРЯЖЕННОГО СОСТОЯНИЯ ПЛОСКОЙ КРУГЛОЙ ДИАФРАГМЫ

Белорусский национальный технический университет, Минск, РеспубликаБеларусь

Научный руководитель канд. техн. наук профессор Молочко В.И.

Плоские круглые диафрагмы (мембраны) постоянной толщины h, мм, защемленные по контуру и нагруженные давлением P, МПа, (рис. 1, а), используются в качестве чувствительного упругого элемента в различного рода измерительных приборах, например, в измерителях давления. Очевидно, что под действием давления жидкости в рабочей камере прибора диафрагма будет деформироваться и в ней будут возникать радиальные σ_r и касательные σ_i напряжения, подсчитываемые по известным [1] формулам:

$$\sigma_r = \pm \frac{3}{8} \frac{pR^2}{h^2} [(3+\mu)\rho^2 - (1+\mu)], \tag{1}$$

$$\sigma_{t} = \pm \frac{3}{8} \frac{\rho R^{2}}{h^{2}} [(3\mu + 1)\rho^{2} - (1 + \mu)], \qquad (2)$$

где $\rho = R_x/R$, причем R_x и R – соответственно текущий и максимальный радиусы диафрагмы, μ – коэффициент Пуассона материала, из которого изготовлена диафрагма.

Для стальной диафрагмы принимают $\mu = 0,3$; следовательно для данного случая

$$\sigma_r = \pm \frac{3}{8} \frac{pR^2}{h^2} (3,3\rho^2 - 1,3), \tag{1}$$

И

$$\sigma_{I} = \pm \frac{3}{8} \frac{pR^{2}}{h^{2}} (1.9\rho^{2} - 1.3).$$
^(2')

Поскольку диафрагма находится в плоском напряженном состоянии, при котором $\sigma_1 = \sigma_1$, $\sigma_2 = 0$ и $\sigma_3 = \sigma_r$, ее прочностные свойства оцениваются по эквивалентному напряжению $\sigma_{3\kappa s}$, равному в соответствии с четвертой теорией прочности (теорией энергии формоизменения)

$$\sigma_{\nu \kappa g} = \sqrt{\sigma_1^2 + \sigma_3^2 - \sigma_1 \sigma_3} = \sqrt{\sigma_r^2 + \sigma_r^2 - \sigma_r \sigma_r} . \tag{3}$$

Подставляя в формулу (3) значения σ_r и σ_t из формул (1`) и (2`), после преобразований получим

$$\sigma_{_{3Ke}} = \pm \frac{3}{8} \frac{pR^2}{h^2} \sqrt{8,27\rho^4 - 6,76\rho^2 + 1,69} \,. \tag{4}$$

Для оценки вида графика функции $\sigma_{ser} = f(\rho)$, определим экстремальные точки зависимости (4), для чего приравняем нулю производную $\frac{d\sigma_{ske}}{d\sigma}$. В результате получим

$$\frac{d\sigma_{\rm source}}{d\rho} = \pm \frac{3}{8} \frac{pR^2}{h^2} \left[\frac{2 \cdot 8,27\rho^3 - 6,76\rho}{\sqrt{8,27\rho^4 - 6,76\rho^2 + 1,69}} \right] = 0,$$

или

 $\rho(8,27\rho^2-3,38)=0$

откуда $\rho_1 = 0$ и $\rho_{2,3} = \pm 0,64$. Подстановка полученных значений ρ в исходное уравнение (4) дает:

напряжение в центре диафрагмы (при $\rho_I = 0$)

$$G_{_{3KK,4}} = \pm \frac{3}{8} \cdot \frac{PR^2}{h^2} \cdot 1,3 \approx 0,488 \frac{PR^2}{h^2};$$

напряжение на расстоянии $\rho_{2,3}=\pm 0,64$

$$G_{\mu a_{min}} \approx \pm \frac{3}{8} \cdot \frac{PR^2}{h^2} \cdot 0,56 \approx 0,212 \frac{PR^2}{h^2}.$$

Напряжения на краю диафрагмы ($\rho = l$) $G_{\text{мм}_{max}} = 0,666 \frac{PR^2}{h^2}$.

Таким образом, передвигаясь от центра диафрагмы к ее краям, отмечаем, что по мере увеличения ρ эквивалентное напряжение $\sigma_{3\kappa\theta}$ сначала уменьшается, достигая минимума в точках $\rho = \pm 0.64$, затем начинает возрастать и при некотором значении ρ достигает величины центрального напряжения $\sigma_{3\kappa\theta,\mu}$; при дальнейшем увеличении ρ величина $\sigma_{3\kappa\theta,\mu}$ возрастает сверх значения $\sigma_{3\kappa\theta,\mu}$ и на краю диафрагмы достигает максимального значения $\sigma_{3\kappa\theta,\mu}$.

Представляет интерес длина участка, на котором напряжения $\sigma_{_{3KB}}$ превосходят $\sigma_{_{3KB,II}}$ (в центре мембраны). Для этого в левую часть равенства (4) представим значение $G_{_{3KB,II}} = \pm \frac{3}{8} \cdot \frac{PR^2}{h^2} \cdot 1,3$. Решение уравнения (4) при указанном значении $\sigma_{_{3KB}}$ дает $\rho = 0,904$. Следовательно превышение напряжений, соответствующих $\sigma_{_{3KB,III}}$, происходит на краевом участке диафрагмы в пределах от 0,904R до R, т.е. длина измеряемого от края диафрагмы участка $\Delta = R - 0,904R = 0,096R \approx 0,1R$

Если теперь обеспечить радиусное сопряжение диафрагмы с корпусом ($r \ge \Delta$), то напряжения на краевом участке, равном радиусу сопряжения r, уже не будут превосходить величины $\sigma_{3\kappa e.u}$. Следовательно применение плавного радиусного сопряжения диафрагмы с корпусом приводит к тому, что опасным с точки зрения прочности становится уже центральная точка диафрагмы, а не места по контуру соединения ее с корпусом рабочей камеры. В связи с этим максимальная величина эквивалентного напряжения $\sigma_{3\kappa e}$ снижается от $_{0.666} \frac{PR^2}{h^2}$ до $_{0.488} \frac{PR^2}{h^2}$ (при $r=\Delta$) и до меньшей величины (при $r \ge \Delta$).

Таким образом, уровень максимальной напряженности диафрагмы снижается по меньшей мере на четверть, что существенно повышает долговечность и работоспособность прибора в целом.

Графики функции $\sigma_{3xs} = f(\rho)$ для диафрагмы постоянной толщины *h*, защемленной по контуру корпуса, и диафрагмы, радиусно сопряженной с корпусом (при $r=\Delta$) реального измерителя давления, описанного в [2], представлены соответственно на рис. 1 и рис. 2.

Расчет $\sigma_{3\kappa\sigma}$ произведен исходя из следующих данных: p=20 Мпа, R=17 мм, h=2,5 мм, $r=\Delta=0,1R=1,7$ мм.

Рис. 1. а) измеритель давления с плоской диафрагмой постоянной толщины; б) график функции $\sigma_{3K8} = f(p)$

 Рис. 2 а) измеритель давления с
 плоской диафрагмой постоянной
 толщины, имеющей радиусы сопряжения с корпусом;
 б) график функции σ_{чка} = f(p)

ЛИТЕРАТУРА:

1. Андреева, Л.Е.Упругие элементы приборов. М.: Машиностроение, 1981. – 392 с., ил.

2. Томашов, И.Н., Молочко, В.И. Диафрагменный датчик давления. НИРС-2003, VIII Республиканская НТК студентов и аспирантов. ч.6, Минск, 2003, с. 70 – 71.

УДК 621.762.4

Ушеренко Ю.С.

АКТИВАЦИЯ СТАЛЕЙ ВЫСОКОЭНЕРГЕТИЧЕСКИМ ПОТОКОМ ДИСКРЕТНЫХ ЧАСТИЦ

Белорусский национальный технический университет, Минск, Республика Беларусь

Научный руководитель канд. техн. наук доцент Протасевич Г.Ф.

The activation of steel preparations by introduction of a high-energy flow of discrete particles occurs because of increase of defection of a material. The classification defects on mezo- and microlevels arising at interaction is given.

Регулирование свойств металлов и сплавов, в основном, осуществляли за счет введения в их состав дополнительных легирующих элементов,