Анализ и графическое представление экспериментальных данных с помощью пакетов Excel, Statistica 10, OriginPro

Студент: гр. 10401118 Гладинов А.Д., гр. 10405118 Семенюк А.И., гр. 10405118 Салтыков Н.И. Научный руководитель – Мельниченко В.В. Белорусский национальный технический университет г. Минск

Важной частью проведения и анализа результатов экспериментов является статистическая обработка полученных данных и их графическое представление. Одним из самых распространенных приемов является аппроксимация. Рассмотрим методику обработки экспериментальных данных с помощью пакетов Excel, Statistica 10, OriginPro. В качестве анализируемых данных выбран результат ионно-лучевого распыления мишени, следующего химического состава, в мас. %: Co – 19,1, Cr – 6,0, La – 7,9 и Si – 67,0 [1]. Введение La позволило снизить температуру плавления сплава системы Co-Cr-Si и тем самым предотвратило растрескивание заготовок мишеней при их изготовлении методом литья.

Толщина нанесенных на ситалловые подложки при распылении мишени резистивных пленок составляла 40, 80, 100, 120 и 160 нм. В результате отжига в интервале температур 300-500 °C, получены следующие данные по величине удельного поверхностного сопротивления (УПС) пленок (таблица 1).

Температура	Толщина пленки, нм					
отжига То, °С	40	80	100	120	160	
	УПС, кОм/кв					
без отжига	19,3	8,43	5,83	6,27	3,95	
300	11,3	5,35	3,44	5,5	2,8	
400	9,07	6,2	4,17	5,05	2,3	
500	8,44	6,75	6,72	7,8	6,73	

Таблица 1 – Данные по величине удельного поверхностного сопротивления пленок

Для анализа данных во всех трех программах была выбрана аппроксимация с полиномиальной подгонкой второй степени. Рассмотрим выполнение ее в каждой из программ и полученные в результате графики.

В пакете Excel строим точечную диаграмму по полученным экспериментальным данным. Для этого заносим наши данные в рабочую область программы и на панели Вставка — Диаграммы выбираем Точечная. Для выполнения аппроксимации воспользуемся функцией Линия трейда. Для этого наводим курсор на график и выбираем «+». Далее Линия трейда — Дополнительные параметры. В появившимся окне Формат линии трейда – выбираем Полиномиальная

Рисунок

6

и задаем степень 2.

В том же окне дополнительно выбираем *Показывать уравнение на диаграмме* и *Поместить на диаграмму величину достоверности (R)*. В результате получим следующий график, приведенный на рисунке 1.

Так же по полученным кривым получаем следующие зависимости:

y = 0,0015x² - 0,4112x + 33,016 и
$$R^2$$
 = 0,9696, (без отжига);
y = 0,0007x² - 0,2074x + 18,063 и R^2 = 0,8681, (To = 300 °C);
y = 0,0002x² - 0,0919x + 12,328 и R^2 = 0,9279, (To = 400 °C);
y = 0,0002x² - 0,0419x + 9,638 и R^2 = 0,4653, (To = 500 °C).

Как видим для анализа данных, полученных при отжиге при 500 °С не совсем подходит полиномиальная функция второй степени, так как имеет место малый коэффициент достоверности. Повысим для нее степени до третей. Получаем следующее уравнение $y = -1E-05x^3 + 0,004x^2 - 0,38x + 18,143$ и $R^2 = 0,9353$.

Statistica 10. Заносим наши данные в рабочую область, после на главное панели выбираем Графика→2М Диаграмма рассеивания. В полученном окне выбираем тип графика – простой. В этом же окне, на вкладке Дополнительно, выбираем в графе Подгонка – Полиномиальная. В результате получим следующий график рисунке 2.

в пакете

Построение графика в пакете OriginPro. Заносим наши данные в рабочую область, после на вкладке снизу выбираем Scatter—Scatter. Получаем диаграмму рассеивания точек. Для выполнения аппроксимации в верхней части рабочего окна выбираем Analysis—Fitting— Polynomial fit. В Polynomial fit задаем Polynomial fit. В Polynomial fit задаем Polynomial Order 2. В результате получаем график, представленный на рисунок 3. И следующие окно с полученными значениями уравнений рисунок 4.

Equation	$y = \text{Intercept} + \text{B1*x^1} + \text{B2*x^2}$						
Plot	В	С	D	E			
Weight	No Weighting						
Intercept	33,016 ± 3,89384	18,063 ± 4,46098	12,328 ± 2,47479	9,638±2,12143			
B1	-0,41118 ± 0,08377	-0,20736 ± 0,09597	-0,09186 ± 0,05324	-0,04187 ± 0,04564			
B2	0,00145 ± 4,10338E	7,1994E-4 ± 4,70104E	1,91071E-4 ± 2,60796E	1,58333E-4 ± 2,23559E			
Residual Sum of Squar	4,52597	5,94041	1,82823	1,34343			
R-Square (COD)	0,96965	0,8681	0,92787	0,46534			
Adj. R-Square	0,9393	0,7362	0,85574	-0,06932			

Рисунок 4 – Полученные значения уравнений

Построим также в пакете OriginPro зависимость изменения удельного поверхностного сопротивления от температуры отжига. Для этого заносим наши данные в рабочую область, после на вкладке снизу выбираем *Line* + *Symbol* \rightarrow *Line* + *Symbol*. В результате получаем график, представленный на рисунок 5.

Рисунок 5 – Зависимость изменения удельного поверхностного сопротивления от температуры отжига

Заключение. Рассмотрено построение графиков и выполнение полиномиальной аппроксимации в пакетах Excel, Statistica 10, OriginPro. По общему виду рабочего окна – программы схожи, и представляют собой набор строк и столбцов. Пакет Excel позволяет выполнять полиномиальную подгонку до 6 степени включительно, Statistica 10 до 5 степени, а OriginPro до 9 степени. В силу этого, наиболее приемлемыми оболочками обработки предполагаем Statistica и Origin Pro.

Список использованных источников

1. Гладинов, А.Д. Расчет температур плавления резистивных сплавов систем Co–Cr–Si и Co–Cr–La–Si / А.Д. Гладинов; науч. рук. В.А. Зеленин// Литьё и металлургия 2020 [Электронный ресурс]: сборник. научн. работ III Международной научно-практической интернет конференции студентов и магистрантов, 18–19 ноября 2020 г/ ред.: А.П. Бежок, И.А. Иванов, – Минск: БНТУ, 2020. – С. 85-87.