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ABSTRACT

The article discusses the solution of the spatial contact problem 
arising when calculating a reinforced concrete rafter beam pivotally 
supported by concrete walls. The walls are modeled by the elastic quarter-
space on the left and by one-eighth of the elastic space on the right. This 
contact problem is solved using the numerical method - the Zhemochkin 
method. For this purpose, the contact area is divided into fragments. 
Rigid one-way ties are set in the center of each fragment to implement 
contact between the beam and the wall. It is assumed that the forces 
arising in these ties provide uniform distribution of reactive pressures in 
the appropriate fragment. Then, the system of linear algebraic equations 
for the mixed method of structural mechanics shall be prepared and 
solved. Different Green functions are assumed for the left and right wall.

The problem under consideration is nonlinear, and it requires an 
iterative process to calculate the effective area of contact and the values 
of the related reactive pressures. The iterative process shall be finished 
when contact stresses at the boundary of separation of the structure from 
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the walls are identically equal to zero, or when there are no stretched 
Zhemochkin ties.

Isolines of contact stresses and vertical displacements of the contact 
areas of the walls are plotted for the flexibility index corresponding 
to the real ratio of rigidity of supported structures and the flexibility 
index corresponding to the support of the absolutely rigid beam. The 
function is found, describing the torque arising in the beam versus the 
distance from the edge of one eighth of the elastic space. A beam can 
be considered as supported on the left and right by the elastic quarter-
space when the distance from the beam axis and the edge of one-eighth 
of the space exceeds the twofold beam width.

Keywords: flexibility index, Zhemochkin method, contact stress-
es, Green function, hinged beam.
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АННОТАЦИЯ

В статье рассматривается решение пространственной кон-
тактной задачи, возникающей при расчете железобетонной 
стропильной балки, шарнирно опираемой на бетонные стены. 
Стены моделируются слева упругим четвертьпространством и 
справа - одной восьмой пространства. Данная контактная за-
дача решается с использованием численного метода - метода  
Б. Н. Жемочкина. Для этого область контакта разбивается на 
участки. В центрах каждого участка устанавливаются жест-
кие односторонние связи, через которые осуществляется кон-
такт балки со стеной. При этом предполагается, что усилия, 
возникающие в установленных связях, вызывают равномерное 
распределение реактивных давлений в соответствующем участ-
ке. Далее составляется и решается система линейных алгебра-
ических уравнений смешанного метода строительной механики. 
Для левой и правой стен принимаются различные функции Грина.

Рассматриваемая задача является нелинейной и требует итера-
ционного процесса для определения фактической области контакта 
с величинами соответствующих реактивных давлений. Моментом 
окончания итерационного процесса служит тождественное равен-
ство нулю контактных напряжений на границе отрыва конструк-
ции от стен либо отсутствие растянутых связей Б. Н. Жемочкина.

Построены изолинии контактных напряжений и вертикаль-
ных перемещений контактных областей стен при показателе 
гибкости, соответствующем реальному соотношению жестко-
стей опираемых конструкций, и показателе гибкости, соответ-
ствующем опиранию абсолютно жесткой балки. Установлена 
зависимость возникающего крутящего момента в балке от рас-
стояния до края одной восьмой упругого пространства. Балку 
можно считать как опираемую слева и справа на упругое чет-
вертьпространство, когда расстояние от оси балки и края од-
ной восьмой пространства превышает двойную ширину балки.

Ключевые слова: показатель гибкости, метод Б. Н. Жемоч- 
кина, контактные напряжения, функция Грина, шарнирно-опер-
тая балка.
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INTRODUCTION

With the development of foundation construction, the development 
of methods for calculation of structures on an elastic base was also 
in progress. Usually, this class of problems in considered as contact 
problems. Therefore, methods applied in calculation of foundations are 
also used for solving the contact problems arising in construction tasks 
for the purposes of design of junction joints for various structures [1].

Lots of models of the elastic base exist. Applicability of each model 
depends on the nature of the engineering problem. However, many 
problems are analysed with the combination of various base models. 
In this area of engineering design, such great scientists are famous 
as Zhemochkin B.N., Sinitsyn A.P., Shtaerman I.Ya, Korenev B.G., 
Klepikov S.N., Gorbunov-Posadov M.I., Solomin V.I., Aleksandrov V.M.,  
Bosakov S.V. and others [1-9].

Contact problems are reduced to solving the integral equations, with 
their solution depending on the integral equation kernel. Only quite 
limited range of problems has a solution with relatively small amount 
of mathematical procedures. Therefore, it’s unreasonable to solve each 
contact problem using integral equations. Due to this, B.N. Zhemochkin 
method is often used successfully for practical purposes [1, 2, 4, 5].

During the design of buildings and facilities, special attention is 
paid to the junctions for various structures. Hinge joints for beams 
supported by walls may be considered as examples of such junctions. 
The design span of a beam and the maximum bending moment 
depend on the sizes of the effective contact zone in the joint. The 
precision of calculation of these values is a factor influencing the 
engineering design of matched structural elements.
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It is assumed further that a beam is supported by the elastic 
quarter-space and one-eighth of the space. Green functions for these 
elastic bases are taken in accordance with [10].

With this problem formulation, the torque arises along the beam 
length. For reinforced concrete elements, their twisting resistance is 
known to be much less than their bending resistance. Also, reinforced 
concrete elements can break down at early stages of loading. 
Therefore, with non-symmetric supporting of beams, arising torques 
must not be neglected [11].

PROBLEM FORMULATION

The beam under consideration is pivotally supported by the elas-
tic quarter-space on the right and by one-eighth of the space on the 
left (see Figure 1). The calculation tasks are as follows: to define the 
contact area; to plot the surfaces of contact stresses and vertical dis-
placements with the real flexibility index and the flexibility index 
corresponding to the support of an absolutely rigid beam by walls; to 
find the torque arising in the beam due to the non-symmetric distri-
bution of contact stresses in the beam joints. For these purposes, the 
following assumptions are accepted:

- bending hypotheses [12] are valid for the beam;
- the wall on the right is modelled as an elastic quarter-space and 

on the left as one-eighth of an elastic space;
- B.N. Zhemochkin ties are assumed to be one-way, being in com-

pression only;
- shear stresses in the zone of contact are disregarded.
The beam is depicted by its longitudinal axis on the design dia-

gram. As for the places of contact with walls, the beam is replaced 
there with middle planes ABCD and KFGH, with their rigidity assumed 
to be infinite in the direction of the Y axis. The B. N.  Zhemochkin 
method [4, 5] is used for calculation. For the detailed description 
of B. N. Zhemochkin method, as it is applied to the spatial contact 
problem under consideration, see the author’s article [13] where the 
beam is considered pivotally supported on the left and right by walls 
as an elastic quarter-space.
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Figure 1. Beam design diagram: ABCD and KFGH are the elements of the beam 
middle plane; X0Y is the coordinate system, where the origin coincides with the 

middle of the beam span, the X axis runs along the longitudinal axis of the beam; 
the Y axis is the horizontal axis; the Z axis is the vertical axis; b is the beam width; 
l∆  is the beam supporting depth; 0E , 0ν  are the modulus of deformation and the 

Poisson ratio of bases; 0u , xϕ , yϕ  are the vertical and angular displacements of 
the middle of the beam about the axis X and Y respectively; iz  is the force in the  

B.N. Zhemochkin tie; n  is the number of B. N. Zhemochkin fragments in a single joint

The design diagram is used to prepare the system of linear alge-
braic equations for the mixed method of structural mechanics [14]:
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where ,i jδ  is a vertical displacement of the point i due to the im-
pact of the vertical unit force applied in the point j; iz  is the unknown 
force in the B. N. Zhemochkin tie i; 0u , xϕ , yϕ  are unknown ver-
tical and angular displacements in the introduced restraint; ( ),i ix y  
are the coordinates of the centre of gravity for the B. N. Zhemochkin 
fragment with the number i; ,i F∆  is the displacement of the point i 
due to the impact of the external load F; 

F

R  is the response in the in-
troduced restraint due to the impact of the external load F; xFM , yFM  
are the reactive torques about the axes X and Y due to the impact of 
the external load F, respectively; n  is the number of B.N. Zhemochkin 
fragments in a single joint.

The major difference between solving this problem and that 
already published in [13] is calculation of coefficients at unknown 
values of ,i jδ  in the system (1).

These coefficients are calculated using the equation (2):
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where λ  is the flexibility index [1], the dimensionless value 
depending on the ratio of rigidity values for the elastic quarter-
space and the supported beam (3); ,i jW  is the vertical displacement 
of the point i in the middle place of the beam due to the impact of 
the unit force applied in the point j (standard methods of structural 
mechanics are used to calculate it [14]); 0E , 0ν  are the modulus 
of deformation and the Poisson ratio of the elastic base; ,i jV  is the 
vertical displacement of the point i on the surface of the elastic base 
(the quarter-space and one-eighth of the space) due to the impact of 
the unit force applied in the point j.

The flexibility index [1]
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where b  is the beam width; l∆  is the beam support depth; EI  is 
the beam bending rigidity.
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The equation described in [13] is used to calculate the 
displacements of points on the surface of the elastic quarter-space 
(for the right joint) ,i jV . The equation (4), derived from the equation 
for calculation of vertical displacements of the elastic quarter-
space surface in accordance with [10], is used to calculate vertical 
displacements of surface points for one-eighth of the elastic space 
(the left joint)
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where, in equations (4)-(12), ( , )i ix y  are the coordinates of the 
point i on the surface of one-eighth of the elastic space where the ver-
tical displacement is calculated; ( , )j jx y  are the coordinates of the 
point j where the unit force jz  is applied; m is the distance between 
the force application point and the rib of one-eighth of the elastic 
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space, parallel to the axis 0y; t is the distance between the force appli-
cation point and the rib of one-eighth of the elastic space, parallel to 

the axis 0x; 0 2
4

4
a =

π −
 [6], 1 2,1a =  [10] are the coefficients.

To calculate vertical displacements ,i iV , where the displacement 
calculation point is the same as the force application point, the dou-
ble integral of the function (4) over the B.N. Zhemochkin fragment is 
precisely calculated.

With the coefficients and absolute terms calculated for the sys-
tem of linear algebraic equations (1), the matrix method is used to 
solve this system. As a result, we have a calculated column vector z



,  
where the first 2n  components are the forces in B.N.  Zhemochkin 
ties, and three other components are the displacements in the re-
straint introduced. Then, the current solution shall be analysed. If 
negative numbers are among the first 2n  components, it means that 
the considered beam will separate from the wall. Therefore, stretched 
ties must be removed from operation. This circumstance defines the 
iterative procedure. After each iteration, the calculate column vector 
z


 is calculated. The iterative procedure shall be stopped when there 
are no negative components z



 in the solution calculated.
To calculate contact stresses in the joints, resulting forces in  

B. N. Zhemochkin ties are uniformly distributed throughout the related B. 
N. Zhemochkin fragments. The pattern of reaction pressures is used to ac-
cess the effective area of contact between the supported beam and the wall.

Because the problem under consideration is non-linear, torques 
arise in the beam, depending on the amount of contact stresses, the 
sizes of the contract area and the distance between the beam and the 
edge of one-eighth of the elastic space, parallel to the longitudinal 
axis of the beam.

NUMERICAL SOLUTION OF THE FORMULATED PROBLEM

We use the reinforced concrete beam BSP6.1 described in the series 
1.146.2 – 10/93, Reinforced Concrete Rafter Beams for Roofing the Buildings 
with 6- and 9-m Spans, Issue 1 (see Figure 2), supported by concrete walls.
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Figure 2. BSP6.1 rafter beam drawing

We carry out the calculations for the beam in terms of effects from 
the concentrated force F  applied at the middle of the beam span in 
the plane X0Z. See Table 1 for the initial data for these calculations.

Table 1

Parameter, unit of measurement Value

Beam design length l , m 5.96

Beam width b , m 0.2

Beam height h , m 0.59

Beam support depth l∆ , m 0.25

Modulus of elasticity of beam concrete E, GPa 31

Modulus of deformations of wall material E
0
, GPa 29

Poisson ratio of wall material 0ν 0.19

Concentrated force F, kN 27

Flexibility index  λ 2.77

The number of B. N. Zhemochkin fragments in the contact zone 
in the direction of the X axis is assumed to be nx=10, and in the direc-
tion of the Y axis, nx=10. The longitudinal vertical edge of the beam 
is in the same plane as the edge of one-eighth of the elastic space (see 
Figure 1). With the iterative process taken into consideration, the re-
sulting solution is as follows (see Figure 3).
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Figure 3. Distribution of contact stresses and displacements in hinge joints of a 
beam: a, b – contact stresses for the left and right joint, respectively; c, d – isolines of 

vertical displacements of wall surfaces for the left and right joint, respectively

Figures demonstrate that the stress-strain behaviour of joints is 
different and not symmetric, both about each other and about the 
longitudinal axis of the beam. Contact stresses for one-eighth of the 
elastic space are less than those for the quarter-space; however, the 
reverse is true for displacements. It should be noted that the effective 
contact area for the left and right joint is reduced to two rows of 
B.N. Zhemochkin fragments, closest to the ribs parallel with the axis 
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OY. As for the remaining part of the supposed support zone, contact 
stresses are identically zeros there (see Figure 3a, b, the blue area), 
corresponding to the beam separation from the wall. Displacements 
of wall surface points in support zones (see Figure 3c, d), in qualitative 
terms, correspond to deformations of the elastic quarter-space (the 
right wall) and one-eighth of the elastic space (the left wall). See 
Table 2 for comparison of contact stresses and displacements (in 
absolute values) for the left and right joint.

Table 2

Contact stresses, MPa Displacements, mm

Left joint Right joint Difference, % Left joint Right joint
Difference, 

%
4.20 4.80 14.29 1.72 0.99 42.44

3.78 4.32 14.29 2.15 1.32 38.60

3.36 3.84 14.29 2.58 1.65 36.05

2.94 3.36 14.29 3.01 1.98 34.22

2.52 2.88 14.29 3.44 2.31 32.85

2.10 2.40 14.29 3.87 2.64 31.78

1.68 1.92 14.29 4.30 2.97 30.93

1.26 1.44 14.29 4.73 3.30 30.23

0.84 0.96 14.29 5.16 3.63 29.65

0.42 0.48 14.29 5.59 3.96 29.16

The difference between contact stresses for the left and right 
joint is 14.29 % throughout the contact area. The difference between 
displacements for the left and right joint is due to the different na-
ture of deformation for the elastic quarter-space and one-eighth of 
the elastic space.

See Figure 4 for the problem solution with the flexibility index 
0,λ =  corresponding to the absolutely rigid beam supported by 

walls.
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Figure 4. Distribution of contact stresses and displacements in hinge joints of an 
absolutely rigid beam: a, b – contact stresses for the left and right joint, respectively; 

c, d – isolines of vertical displacements of wall surfaces for the left and right joint, 
respectively

When the absolutely rigid beam is supported, contact stresses 
grow nearby the outer boundaries of the contact area; for one-
eighth of the space, highest stresses arise in contour points 
farthest from the edge of one-eighth of the space (see Figure 4a). 
The flexibility index is 0λ = ; then, as a result of deformation, 
surface points in one-eighth of the space and, for the equivalent 
case, in the quarter-space also, are placed not as a surface but 
as a plane of displacements randomly located in the space (see 
Figure 4c, d). However, the beam support by the quarter-space on 
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the left and right has resulted only in translational motion of the 
aforementioned points [13].

Non-symmetric support results in torque arising in the beam; 
this torque is the same throughout the beam length. See Figure 5 for 
the plot describing the relative torque versus the relative distance 
between the longitudinal axis of the beam and the edge of one-eighth 
of the space parallel to this axis.

Figure 5. Relative torque T
Pb

 in the beam versus relative distance t
b

 (see Figure 1) 

from the edge of one-eighth of the elastic space; P is concentrated external force; b is 
beam width

The figure demonstrates that, if the beam is supported at significant 
distance from the edge of one-eighth of the elastic space, torques fall 
rapidly and, at the distance t=2b (marked by the dashed line at Figure 
5), where b is the beam width, torques become negligible. Here, the 
pattern of distribution of contact stresses and vertical displacements 
becomes the same as those for the beam supported by the quarter-
space, i.e. the problem formulated here is reduced to the problem 
in which the beam is supported on the left and right by the elastic 
quarter-space [13].
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CONCLUSIONS

1. The numerical solution has been obtained for the spatial con-
tact problem where a reinforced concrete beam is supported by one-
eighth of the elastic space, at one side, and by the quarter-space, at 
another side. Contact stresses in one-eighth of the elastic space were 
found to be less than those for the quarter-space; for displacements, 
the reverse is true.

2. If an absolutely rigid beam is supported by walls, displacements 
of points on the wall surface are placed as an inclined plane.

3. It was found that torques arise when a beam is supported 
non-symmetrically, and these torques are the functions of the distance 
between the longitudinal axis of the beam and the edge of one-eighth 
of the elastic space. This function is approximately exponential. At 
the distance 2b between the beam and the edge of one-eighth of the 
elastic space, torques in the beam can be neglected and, therefore, 
the beam may be calculated as supported by the elastic quarter-space.

4. The demonstrated calculation method is general, and it is ap-
plicable to carry out calculations not only for reinforced concrete 
beams but also for metal and wooden beams, for concentrated forces 
and other types of loads.
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