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ABSTRACT

The article discusses the solution of the spatial contact problem
arising when calculating a reinforced concrete rafter beam pivotally
supported by concrete walls. The walls are modeled by the elastic quarter-
space on the left and by one-eighth of the elastic space on the right. This
contact problem is solved using the numerical method - the Zhemochkin
method. For this purpose, the contact area is divided into fragments.
Rigid one-way ties are set in the center of each fragment to implement
contact between the beam and the wall. It is assumed that the forces
arising in these ties provide uniform distribution of reactive pressures in
the appropriate fragment. Then, the system of linear algebraic equations
for the mixed method of structural mechanics shall be prepared and
solved. Different Green functions are assumed for the left and right wall.

The problem under consideration is nonlinear, and it requires an
iterative process to calculate the effective area of contact and the values
of the related reactive pressures. The iterative process shall be finished
when contact stresses at the boundary of separation of the structure from
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the walls are identically equal to zero, or when there are no stretched
Zhemochkin ties.

Isolines of contact stresses and vertical displacements of the contact
areas of the walls are plotted for the flexibility index corresponding
to the real ratio of rigidity of supported structures and the flexibility
index corresponding to the support of the absolutely rigid beam. The
function is found, describing the torque arising in the beam versus the
distance from the edge of one eighth of the elastic space. A beam can
be considered as supported on the left and right by the elastic quarter-
space when the distance from the beam axis and the edge of one-eighth
of the space exceeds the twofold beam width.

Keywords: flexibility index, Zhemochkin method, contact stress-
es, Green function, hinged beam.
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AHHOTALMUA

B cmamwbe paccmampueaemcst peuleHue NPOCMPAHCMBEHHOU KOH-
makmmoil 3adauu, 803HUKANWell npu pacueme icese300emoHHOl
CMponuibHoll 6anku, WAPHUPHO onupaemoil Ha GemoHHble CMeHbL.
CmeHblL MOOeUPYIOMCS CNle8A YNPY2UM Hema8epmbnpoCmpaHcmeom u
cnpasa — 00HOll 80cbMOU npocmpaxcmed. /[aHHas KOHMAaKmHas 3a-
daua pewaemcst ¢ UCNONIL30BAHUEM UUCAEHHO20 Memodd — memooda
B. H. )KemoukuHa. /[ns amoeo obiacms KoHmakma pazbusaemcs Ha
yuacmku. B yenmpax xanc0ozo yuacmka ycmaHasau8awmcs yecm-
Kue 00HOCMOPOHHUE (853U, Uepe3 KOMOpble OCYULeCmBI1emcsi KOH-
makm 6anku co cmeHoil. IIpu amom npednosazaemcsi, 4mo ycuuus,
B03HUKAWOWUE 8 YCMAHOBNEHHBIX CBA3SX, 8bl3blBAIOM PABHOMEPHOE
pacnpedenieHue peaKMUBHbLX 0a8JeHULL 8 coomaemcmayoujeM yuacm-
ke. Jlanee cocmagasiemcs U pewaemcsi cucmema JUHeUHbLX aneebpa-
UYecKUX ypasHeHUll CMeWAaHHO020 Memooa CMpoumeibHOU MeXaHUuKU.
Znsnegotl u npagotl cmeH NPpUHUMAOMCA pA3AUUHble hyHKUUU [PUHA.

Paccmampusaemas 3adaua seisiemcst HenuHellHotl u mpebyem umepa-
UUOHHO20 npouecca 0711 onpedesieHUs hakmuueckoll 0bracmu KoHmakma
€ 8eIUUUHAMU COOMBEMCMBYOWUX PeaKMUBHbIX dasneHutl. MomeHmom
OKOHUAHUSL UMEePAayUOHHO20 NPOUECCa CYHCUM MoncdecmaeHHOe PaABeH-
CMB0 HYJIH KOHMAKMHMbIX HANPAXCEHUL HA 2PAHUYe 0MpPbl8d KOHCMPYK-
yuu om cmeH aub6o omcymemaeue pacmaHymsix cgsizetl b. H. )KemoukuHa.

ITocmpoeHbl UB0NUHUU KOHMAKMHBLX HANPSANCEHUTL U 8ePMUKAb-
HbLX nepemewjeHUll KOHMAKMHbLX obaiacmell cmeH npu nokasameJie
eubkxocmu, coomeemcmayujem peatbHOMY COOMHOWEHUI HeCmKo-
cmeitl onupaemulx KOHCMPYKYUIL, U nokazamese zubkocmu, coomeem-
cmeyrwem onupaHul abconomHo yecmkoll banku. YemaxosieHa
3a8UCUMOCMb BO3HUKAIOULE20 KpPymsaulezo MomeHma 8 bajike om pac-
CMOsIHUAL 00 Kpast 00HOLI 80CbMOTl ynpyz020 npocmpaHcmed. banky
MOJNCHO CUUMAamMb KAK ONUpAeMyto Cle8d U cnpasa Ha ynpyeoe uem-
8epMbNPOCMPAHCMB0, K020a pACCMOsiHUe 0m ocu 6anku u Kpas 00-
HOll 80OCbMOLL NpOCMPAHCMBa npeswvlidaem 080LUHYH WUPUHY OATKUL.

KirroueBbie ci1oBa: mokasaTesib Tubkoctd, metoz b. H. XKemou-
KWHa, KOHTaKTHbIE HaNIpsDKeHUA, GyHKIMA ['pyHa, IIapHUPHO-OIIep-
Tas b6anka.
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Jna qutuposanud: bocakos, C. B. PelieHue mpocTpaHCTBEH-
HOIl KOHTAKTHOM 3a/lauM NMIAPHUPHBIX Y3JI0B OMHpaHUA Oajku Ha
YIIPyTUe 4eTBEPThIIPOCTPAHCTBO U OJHY BOCBMYKO IIPOCTPaHCTBa
/ C. B. Bocakos, II. [I. Ckauek // IIpoGsieMbl COBpEMEHHOTO Oe-
TOHA U JXeje300eToHa : cb6. Hay4. Tp. / VH-T BenHVVC; peakoir.:
O. H. JlemukeBuu [u ap.]. — MuHck, 2020. — Beim. 12. — C. 28-44.
https://doi.org/ 10.35579,/2076-6033-2020-12-02 (aHI1. 13.).

INTRODUCTION

With the development of foundation construction, the development
of methods for calculation of structures on an elastic base was also
in progress. Usually, this class of problems in considered as contact
problems. Therefore, methods applied in calculation of foundations are
also used for solving the contact problems arising in construction tasks
for the purposes of design of junction joints for various structures [1].

Lots of models of the elastic base exist. Applicability of each model
depends on the nature of the engineering problem. However, many
problems are analysed with the combination of various base models.
In this area of engineering design, such great scientists are famous
as Zhemochkin B.N., Sinitsyn A.P., Shtaerman 1.Ya, Korenev B.G.,
KlepikovS.N., Gorbunov-PosadovM.I., Solomin V.., AleksandrovV.M.,
Bosakov S.V. and others [1-9].

Contact problems are reduced to solving the integral equations, with
their solution depending on the integral equation kernel. Only quite
limited range of problems has a solution with relatively small amount
of mathematical procedures. Therefore, it’s unreasonable to solve each
contact problem using integral equations. Due to this, B.N. Zhemochkin
method is often used successfully for practical purposes [1, 2, 4, 5].

During the design of buildings and facilities, special attention is
paid to the junctions for various structures. Hinge joints for beams
supported by walls may be considered as examples of such junctions.
The design span of a beam and the maximum bending moment
depend on the sizes of the effective contact zone in the joint. The
precision of calculation of these values is a factor influencing the
engineering design of matched structural elements.
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It is assumed further that a beam is supported by the elastic
quarter-space and one-eighth of the space. Green functions for these
elastic bases are taken in accordance with [10].

With this problem formulation, the torque arises along the beam
length. For reinforced concrete elements, their twisting resistance is
known to be much less than their bending resistance. Also, reinforced
concrete elements can break down at early stages of loading.
Therefore, with non-symmetric supporting of beams, arising torques
must not be neglected [11].

PROBLEM FORMULATION

The beam under consideration is pivotally supported by the elas-
tic quarter-space on the right and by one-eighth of the space on the
left (see Figure 1). The calculation tasks are as follows: to define the
contact area; to plot the surfaces of contact stresses and vertical dis-
placements with the real flexibility index and the flexibility index
corresponding to the support of an absolutely rigid beam by walls; to
find the torque arising in the beam due to the non-symmetric distri-
bution of contact stresses in the beam joints. For these purposes, the
following assumptions are accepted:

- bending hypotheses [12] are valid for the beam;

- the wall on the right is modelled as an elastic quarter-space and
on the left as one-eighth of an elastic space;

- B.N. Zhemochkin ties are assumed to be one-way, being in com-
pression only;

- shear stresses in the zone of contact are disregarded.

The beam is depicted by its longitudinal axis on the design dia-
gram. As for the places of contact with walls, the beam is replaced
there with middle planes ABCD and KFGH, with their rigidity assumed
to be infinite in the direction of the Y axis. The B. N. Zhemochkin
method [4, 5] is used for calculation. For the detailed description
of B. N. Zhemochkin method, as it is applied to the spatial contact
problem under consideration, see the author’s article [13] where the
beam is considered pivotally supported on the left and right by walls
as an elastic quarter-space.
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Figure 1. Beam design diagram: ABCD and KFGH are the elements of the beam
middle plane; XOY is the coordinate system, where the origin coincides with the
middle of the beam span, the X axis runs along the longitudinal axis of the beam;
the Y axis is the horizontal axis; the Z axis is the vertical axis; b is the beam width;

Al is the beam supporting depth; Eo , Vo are the modulus of deformation and the
Poisson ratio of bases; U, @, , (Py are the vertical and angular displacements of
the middle of the beam about the axis X and Y respectively; z; is the force in the
B.N. Zhemochkin tie; 7 is the number of B. N. Zhemochkin fragments in a single joint

The design diagram is used to prepare the system of linear alge-
braic equations for the mixed method of structural mechanics [14]:

Oy Zi 48,2, ¥y +@ - Y+, - x; + A =0

5n,121+"'+5n,nzn+”o+<Px‘yn+(Py'xn+An,F=0

Ot nitZnat T F O 000y T+ Py Yy Ty X 4,4 =0 (1)

82/1,11+lZn+1 +--t 82}1,21122;1 + Z’lO + (px ’ y2n + (py ’ x2n + AZn,F = 0

2n

2n 2n
22+ Ry =0, -2z, -y, + M =0;-3 z -xl.+MyF =0
i=1 i=1 i=1
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where 9, . is a vertical displacement of the point i due to the im-
pact of the vertical unit force applied in the pointj; z; is the unknown
force in the B. N. Zhemochkin tie i; U, ¢,, ¢ , are unknown ver-
tical and angular displacements in the introduced restraint; ( X, );
are the coordinates of the centre of gravity for the B. N. Zhemochkin
fragment with the number i; A, iF s the displacement of the point i
due to the impact of the external load F; R is the response in the in-
troduced restraint due to the impact of the external load F; M ., M
are the reactive torques about the axes X and Y due to the impact of
the external load F, respectively; n is the number of B.N. Zhemochkin
fragments in a single joint.

The major difference between solving this problem and that
already published in [13] is calculation of coefficients at unknown
values of ij in the system (1).

These coefficients are calculated using the equation (2):

2
1-v; v, @)
nk,
where A is the flexibility index [1], the dimensionless value
depending on the ratio of rigidity values for the elastic quarter-
space and the supported beam (3); W is the vertical displacement
of the point i in the middle place of the beam due to the impact of
the unit force applied in the point j (standard methods of structural
mechanics are used to calculate it [14]); EO, VvV, are the modulus
of deformation and the Poisson ratio of the elastic base; Vl . is the
vertical displacement of the point i on the surface of the elastic base
(the quarter-space and one-eighth of the space) due to the impact of
the unit force applied in the point j.

The flexibility index [1] .
A= M , (3)

(I-vy)EI

si,j:xW,.,ﬁ

where b is the beam width; Al is the beam support depth; EI is
the beam bending rigidity.
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The equation described in [13] is used to calculate the
displacements of points on the surface of the elastic quarter-space
(for the right joint) V . The equation (4), derived from the equation
for calculation of Vertlcal displacements of the elastic quarter-
space surface in accordance with [10], is used to calculate vertical
displacements of surface points for one-eighth of the elastic space
(the left joint)

V/ = !
JO =3 + (- )’

+ A+ A+ A4+ A, +B+B,+B,+B, (4)

am(x; —x; +m) 1+ a,

[(x, —x, +2m)> + (3, -y )*T" \/(x —x;+2m) + (v, -y,

1=

()

ait(y; —y; +1) l+a,
[(x; —x) +(y;—y; +20) pe \/(x —x) +(y, - y]+2t) ©)

2 =

4 am(y; = y; +m) 1+a,
Py - x4 2m)t 4 (v -y, + 2071 \/(x —x, +2m)* + (v, — y, +20)° )
1 21+ ay)

A, = 2 >t 2 y > (8)
JOu =3, +2m) + (=, 4207 0= x, +2m) + (3, v, +20)

5 2a, R R
ﬂ\/(x,-—x_,-)er(y,-—yj)z 2\/}’}1()6 X +m)
a m(x; — x; +m) ~ 2m(x; —x; +m) 9)

wl(x=x)" + -y, [(xi—xj)2+(yi—yj)2T/2X

\/(xi _xj)z +( _)’j)2
2\/m(xl. —x;+m)

x Arctan
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where, in equations (4)-(12), (X;, ;) are the coordinates of the
point i on the surface of one-eighth of the elastic space where the ver-
tical displacement is calculated; (x I j) are the coordinates of the
point j where the unit force Z ; is applied; m is the distance between
the force application point and the rib of one-eighth of the elastic
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space, parallel to the axis Oy; t is the distance between the force appli-
cation point and the rib of one-eighth of the elastic space, parallel to

the axis Ox; a, = [6], a, =2,1 [10] are the coefficients.

' —4

To calculate vertical displacements Vl ;» where the displacement
calculation point is the same as the force hpplication point, the dou-
ble integral of the function (4) over the B.N. Zhemochkin fragment is
precisely calculated.

With the coefficients and absolute terms calculated for the sys-
tem of linear algebraic equations (1), the matrix method is used to
solve this system. As a result, we have a calculated column vector =,
where the first 271 components are the forces in B.N. Zhemochkin
ties, and three other components are the displacements in the re-
straint introduced. Then, the current solution shall be analysed. If
negative numbers are among the first 271 components, it means that
the considered beam will separate from the wall. Therefore, stretched
ties must be removed from operation. This circumstance defines the
iterative procedure. After each iteration, the calculate column vector
z is calculated. The iterative procedure shall be stopped when there
are no negative components = in the solution calculated.

To calculate contact stresses in the joints, resulting forces in
B. N. Zhemochkin ties are uniformly distributed throughout the related B.
N. Zhemochkin fragments. The pattern of reaction pressures is used to ac-
cess the effective area of contact between the supported beam and the wall.

Because the problem under consideration is non-linear, torques
arise in the beam, depending on the amount of contact stresses, the
sizes of the contract area and the distance between the beam and the
edge of one-eighth of the elastic space, parallel to the longitudinal
axis of the beam.

NUMERICAL SOLUTION OF THE FORMULATED PROBLEM

We use the reinforced concrete beam BSP6.1 described in the series
1.146.2-10,/93, Reinforced Concrete Rafter Beams for Roofing the Buildings
with 6- and 9-m Spans, Issue 1 (see Figure 2), supported by concrete walls.
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Figure 2. BSP6.1 rafter beam drawing

We carry out the calculations for the beam in terms of effects from
the concentrated force F' applied at the middle of the beam span in
the plane X0Z. See Table 1 for the initial data for these calculations.

Table 1

Parameter, unit of measurement Value

Beam design length [, m 5.96
Beam width b, m 0.2

Beam height h , m 0.59

Beam support depth A/, m 0.25
Modulus of elasticity of beam concrete E, GPa 31
Modulus of deformations of wall material EO, GPa 29

Poisson ratio of wall material Vo 0.19
Concentrated force F, kN 27

Flexibility index ), 2.77

The number of B. N. Zhemochkin fragments in the contact zone
in the direction of the X axis is assumed to be n =10, and in the direc-
tion of the Y axis, n =10. The longitudinal vertical edge of the beam
is in the same plane as the edge of one-eighth of the elastic space (see
Figure 1). With the iterative process taken into consideration, the re-
sulting solution is as follows (see Figure 3).
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Figure 3. Distribution of contact stresses and displacements in hinge joints of a
beam: a, b - contact stresses for the left and right joint, respectively; c, d - isolines of
vertical displacements of wall surfaces for the left and right joint, respectively

Figures demonstrate that the stress-strain behaviour of joints is
different and not symmetric, both about each other and about the
longitudinal axis of the beam. Contact stresses for one-eighth of the
elastic space are less than those for the quarter-space; however, the
reverse is true for displacements. It should be noted that the effective
contact area for the left and right joint is reduced to two rows of
B.N. Zhemochkin fragments, closest to the ribs parallel with the axis
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OY. As for the remaining part of the supposed support zone, contact
stresses are identically zeros there (see Figure 3a, b, the blue area),
corresponding to the beam separation from the wall. Displacements
of wall surface points in support zones (see Figure 3c, d), in qualitative
terms, correspond to deformations of the elastic quarter-space (the
right wall) and one-eighth of the elastic space (the left wall). See
Table 2 for comparison of contact stresses and displacements (in
absolute values) for the left and right joint.

Table 2
Contact stresses, MPa Displacements, mm
Left joint Right joint Difference, % Left joint | Right joint Diffeor :nce,
4.20 4.80 14.29 1.72 0.99 42.44
3.78 4.32 14.29 2.15 1.32 38.60
3.36 3.84 14.29 2.58 1.65 36.05
2.94 3.36 14.29 3.01 1.98 34.22
2.52 2.88 14.29 3.44 2.31 32.85
2.10 2.40 14.29 3.87 2.64 31.78
1.68 1.92 14.29 4.30 2.97 30.93
1.26 1.44 14.29 4.73 3.30 30.23
0.84 0.96 14.29 5.16 3.63 29.65
0.42 0.48 14.29 5.59 3.96 29.16

The difference between contact stresses for the left and right
joint is 14.29 % throughout the contact area. The difference between
displacements for the left and right joint is due to the different na-
ture of deformation for the elastic quarter-space and one-eighth of
the elastic space.

See Figure 4 for the problem solution with the flexibility index
A =0, corresponding to the absolutely rigid beam supported by
walls.
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Figure 4. Distribution of contact stresses and displacements in hinge joints of an
absolutely rigid beam: a, b - contact stresses for the left and right joint, respectively;
¢, d - isolines of vertical displacements of wall surfaces for the left and right joint,
respectively

When the absolutely rigid beam is supported, contact stresses
grow nearby the outer boundaries of the contact area; for one-
eighth of the space, highest stresses arise in contour points
farthest from the edge of one-eighth of the space (see Figure 4a).
The flexibility index is A = O ; then, as a result of deformation,
surface points in one-eighth of the space and, for the equivalent
case, in the quarter-space also, are placed not as a surface but
as a plane of displacements randomly located in the space (see
Figure 4c, d). However, the beam support by the quarter-space on
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the left and right has resulted only in translational motion of the
aforementioned points [13].

Non-symmetric support results in torque arising in the beam,;
this torque is the same throughout the beam length. See Figure 5 for
the plot describing the relative torque versus the relative distance
between the longitudinal axis of the beam and the edge of one-eighth

of the space parallel to this axis.
T

Pb

—
(8]
L
=
',

o~

. T o
Figure 5. Relative torque — in the beam versus relative distance i (see Figure 1)
Pb b
from the edge of one-eighth of the elastic space; P is concentrated external force; b is
beam width

Thefigure demonstratesthat, ifthebeamis supported at significant
distance from the edge of one-eighth of the elastic space, torques fall
rapidly and, at the distance t=2b (marked by the dashed line at Figure
5), where b is the beam width, torques become negligible. Here, the
pattern of distribution of contact stresses and vertical displacements
becomes the same as those for the beam supported by the quarter-
space, i.e. the problem formulated here is reduced to the problem
in which the beam is supported on the left and right by the elastic
quarter-space [13].
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CONCLUSIONS

1. The numerical solution has been obtained for the spatial con-
tact problem where a reinforced concrete beam is supported by one-
eighth of the elastic space, at one side, and by the quarter-space, at
another side. Contact stresses in one-eighth of the elastic space were
found to be less than those for the quarter-space; for displacements,
the reverse is true.

2.If an absolutely rigid beam is supported by walls, displacements
of points on the wall surface are placed as an inclined plane.

3. It was found that torques arise when a beam is supported
non-symmetrically, and these torques are the functions of the distance
between the longitudinal axis of the beam and the edge of one-eighth
of the elastic space. This function is approximately exponential. At
the distance 2b between the beam and the edge of one-eighth of the
elastic space, torques in the beam can be neglected and, therefore,
the beam may be calculated as supported by the elastic quarter-space.

4. The demonstrated calculation method is general, and it is ap-
plicable to carry out calculations not only for reinforced concrete
beams but also for metal and wooden beams, for concentrated forces
and other types of loads.
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