УДК 05.04.11

Pryazhko A., Tsimafeyeva Y. Safety of Belarusian Nuclear Power Plant Is First

Belarusian National Technical University Minsk, Belarus

In this paper the structural features of reactors, management and safety systems of the Chernobyl nuclear power plant and the Belarusian nuclear power plant are considered. The results of two power plants comparison in terms of the probability of an accident and complexity of its prevention are presented.

The launch of the nuclear power plant (further - NPP) on the territory of Belarus excited not only our citizens since the Republic of Belarus is the most affected country from the Chernobyl accident, but also neighboring countries.

The most important part of a nuclear power plant is a nuclear reactor in the reactor core of which a nuclear chain reaction (further – NCR) occurs. Soviet designed nuclear reactors RBMK–1000 were installed at the Chernobyl NPP. RBMK is a high-power channel-type reactor. It has one water circuit that cools the reactor core and rotates the generator turbine. The reactor core is a graphite cylinder with a height of 7 m and a diameter of 11.8 m [1]. NCR accelerates when there is not enough water in the reactor [2].

The accident at the 4th reactor of the Chernobyl NPP occurred on April 26, 1986. The accident occurred primarily due to the violation by the NPP personnel of the technological regulations for the operation of the reactor and the shortcomings of the reactor design [2].

The Belarusian NPP uses WWER–1200 type reactors. The WWER (or VVER) is a water-water energetic reactor. Its shell is a cylindrical capsule. It reaches a height of 13 m and a diameter of 4 m. The reactor core itself is a space filled with water [3]. The reactor design allows the use of additional safety and management systems (emergency injection of boron into the cooling water circuit and a passive condensate cooling system) [4]. Also, a feature of the WWER reactor is the attenuation of the NRC with a lack of water.

Table 1. Comparative analysis of the structural features of the Chernobyl and Belarusian NPPs

Criteria	Chernobyl NPP,	Belarusian NPP,
	RBMK — 1000	WWER — 1200
	reactor	reactor
Behavior of the	NCR is accelerating	NCR is fading
NCR with a		
lack of water		
Reactor core	Requires constant	Requires a normal
management	concentrated	operating level of
	attention from an	concentration from
	operator	an operator
The presence		
of flammable	Graphite in large	Not available
substances in	quantities	
the reactor core		
NCR	Control rods	Control rods,
management		boron injection
system		
Safety systems	One emergency	Double steel reactor
against design	reactor shutdown	shell; double
basic accidents	system; concrete	concrete protective
	reactor containment;	sheath of the reactor
	reactor emergency	shell with prestressed
	cooling system	fittings; emergency
		and passive
		condensate cooling

		system; reactor core catcher; two emergency reactor shutdown systems
Accidents at reactors of this type	1975, 1982, 1992 – rupture of canals; 1986 – mass rupture of canals and destruction of the reactor core	Not available

The main differences between the Belarusian NPP and the Chernobyl NPP are more sophisticated safety systems against design accidents at the Belarusian NPP, reduction of the human risk factor and constant control from the IAEA, which makes it possible to use international experience in the safe operation of nuclear power plants. A repeat of the Chernobyl accident at the Belarusian NPP is impossible due to structural differences between the plants. It is also impossible for an accident to occur with consequences of a similar scale.

References:

1. Chernobyl NPP: Reactor type and device [Electronic resource] // Exclusion zone. – Mode of access: https://chornobyl.ru. – Date of access: 03.04.2022.

2. Sidorenko, V. A. Lessons of the Chernobyl accident [Electronic resource]. – Mode of access: https://elib.biblioatom.ru. – Date of access: 03.04.2022.

3. Substantiation of the strength and resource of the main equipment of the reactor plant [Electronic resource]. – Mode of access: https://gidropress.podolsk.ru. – Date of access: 03.04.2022.

4. Public meetings [Electronic resource]. – Mode of access: https://gosatomnadzor.mchs.gov.by. – Date of access: 03.04.2022.