О МАТЕМАТИЧЕСКОМ МОДЕЛИРОВАНИИ АКУСТИЧЕСКОЙ ЭМИССИИ В АНИЗОТРОПНЫХ ДВУХКОМПОНЕНТНЫХ СРЕДАХ

¹Поленов В. С., ²Чигарев А. В.

¹ВУНЦ ВВС «Военно-воздушная академия имени профессора Н. Е. Жуковского и Ю. А. Гагарина», Москва, Россия ²Белорусский национальный технический университет, Минск, Беларусь

Взаимопроникающее движение упругой компоненты и жидкости будем рассматривать как движение жидкости в деформируемой анизотропной пористой среде. Будем предполагать, что размеры пор малы по сравнению с расстоянием, на котором существенно изменяются кинематические и динамические характеристики движения. Это позволяет считать, что обе среды сплошными и в каждой точке пространства будет два вектора смещения: $\vec{U}^{(1)}(\vec{r},t)$ — вектор смещения упругой компоненты (скелета пористой среды) и $\vec{U}^{(2)}(\vec{r},t)$ — вектор смещения жидкости $\vec{r}=(x_1,x_2,x_3)$.

Акустическая эмиссия (АЭ) в двухкомпонентных анизотропных пористых средах возникает в результате быстрых структурных изменений в некоторых областях упругой компоненты (при пластическом сдвиге, двойникновании, изменении атомной структуры, появлении микротрещин и т. п.). Такие области в анизотропной пористой среде будем называть очагами эмиссии (ОЭ). Наличие очагов эмиссии (ОЭ) в сплошной упругой компоненте пористой среды порождает поле смещения элементов среды $\vec{U}^{(1)}(\vec{r},t)$,

$$\vec{r} = (x_1, x_2, x_3)$$
 , которое можно разделить на спонтанное $\vec{U}^{\,(1)}{}^{(s)}$ и упругое $\vec{U}^{\,(1)}{}^{(e)}$ [1–4].

$$\vec{U}^{(1)} = \vec{U}^{(1)(s)} + \vec{U}^{(1)(e)},\tag{1}$$

где $\bar{U}^{(1)(s)}(\bar{r},t)$ поле спонтанных перемещений, которое является характеристикой структурного превращения в ОЭ или поле дисторсий, записанное в виде

$$u_{ik}^{(1)(s)}(r,t) = \frac{\partial U_i^{(1)(s)}(r,t)}{\partial x_{i}}.$$
 (2)

Из (1) $U_{i}^{\,(1)(e)} = U_{i}^{\,(1)} - U_{i}^{\,(1)(s)}$ и подставим в упругую дисторсию

$$u_{ik}^{(1)(e)} = \frac{\partial U_i^{(1)(e)}}{\partial x_k} = \frac{\partial (U_i^{(1)} - U_i^{(1)(s)})}{\partial x_k} = \frac{\partial U_i^{(1)}}{\partial x_k} - u_{ik}^{(1)(s)}.$$
 (3)

По повторяющимся индексам здесь и в дальнейшем проводится суммирование от 1 до 3.

В случае пластической деформации тензор $u_{ik}^{(1)(s)}$ можно поставить в соответствие локальному значению тензора плотности дислокации $\rho_{ik}(\vec{r},t)$, а изменение компонент $u_{ik}^{(1)(s)}$ во времени выразить через дислокационные потоки [4]. При решеточном или магнитном фазовом переходе можно установить связь спонтанной деформации $u_{ik}^{(1)(s)}$ с локальным значением характеризующего превращение параметра порядка $\eta(\vec{r},t)$. Таким образом, физическое описание ОЭ сводится к заданию функционала

$$u_{ik}^{(1)(s)}(\vec{r},t) = u_{ik}^{(1)(s)}[\rho(\vec{r},t);\eta(\vec{r},t)]. \tag{4}$$

Для анизотропной двухкомпонентной пористой среды тензор упругих перемещений и перемещений жидкости связан с тензором напряжений и упругой дисторсией обобщенным законом Гука [5, 6]:

- полный тензор напряжений в скелете при наличии жидкости в порах

$$T_{ij} = \Lambda_{ijkl} u_{kl}^{(1)(e)} + A_{ij} u_{rr}^{(2)} = \Lambda_{ijkl} \left(\frac{\partial U_k^{(1)}}{\partial x_i} - u_{ki}^{(1)(s)} \right) + A_{ij} \frac{\partial U_r^{(2)}}{\partial x_i};$$
 (5)

 и силой, действующей на жидкость, отнесенной к единице площади поперечного сечения пористой среды

$$N = A_{ij}u_{ij}^{(1)(e)} + Qu_{rr}^{(2)} = A_{ij}(\frac{\partial U_i^{(1)}}{\partial x_i} - u_{ij}^{(1)(s)}) + Q\frac{\partial U_r^{(2)}}{\partial x_r}.$$
 (6)

Запишем уравнения движения пористой среды [7, 8]

$$\rho_{11} \frac{\partial^{2} U_{i}^{(1)}}{\partial t^{2}} + \rho_{12} \frac{\partial^{2} U_{i}^{(2)}}{\partial t^{2}} = \frac{\partial T_{ij}}{\partial x_{j}};$$

$$\rho_{12} \frac{\partial^{2} U_{i}^{(1)}}{\partial t^{2}} + \rho_{22} \frac{\partial U_{i}^{(2)}}{\partial t^{2}} = \frac{\partial N}{\partial x_{i}}.$$
(7)

Система (5)–(7) приводит к основным уравнениям задачи акустической эмиссии

$$\rho_{11} \frac{\partial^2 U_i^{(1)}}{\partial t^2} + \rho_{12} \frac{\partial^2 U_i^{(2)}}{\partial t^2} - \Lambda_{ijkl} \left\{ \frac{\partial^2 U_l^{(1)}}{\partial x_k \partial x_j} \right\} - A_{ij} \frac{\partial^2 U_r^{(2)}}{\partial x_r \partial x_j} = -\Lambda_{ijkl} \left\{ \frac{\partial u_{kl}^{(1)(s)}}{\partial x_j} \right\}; \tag{8}$$

$$\rho_{12} \frac{\partial^2 U_i^{(1)}}{\partial t^2} + \rho_{22} \frac{\partial^2 U_i^{(2)}}{\partial t^2} - A_{ij} \left\{ \frac{\partial^2 U_r^{(1)}}{\partial x_r \partial x_j} \right\} - Q \frac{\partial^2 U_r^{(2)}}{\partial x_i \partial x_r} = -A_{ij} \frac{\partial u_{kj}^{(1)(s)}}{\partial x_k}. \tag{9}$$

Решение (8) и (9) будем искать в виде монохроматической волны [9]

$$U_i^{(1)} = C_i^{(1)} \exp i(q_k x_k - i\omega t), \quad U_i^{(2)} = C_i^{(2)} \exp i(q_k x_k - \omega t), \tag{10}$$

где $C_j^{(1)}$, $C_j^{(2)}$ – амплитуды колебаний соответствующих компонент среды; q_k – координаты волнового вектора \vec{q} ; ω – частота.

Упругую дисторсию зададим следующим образом

$$u_{kj}^{(1)(s)} = u_{kj0}^{(1)(s)} \exp i(q_k x_k - \omega t).$$
 (11)

Здесь $u_{ki9}^{(1)(s)}$ — значение тензора дисторсии при t=0 .

Подставим (10) и (11) в выражения (8) и (9), и учитывая, что дифференцирование по времени приводит к умножению на $-i\omega$, а дифференцирование по x_k приводит к умножению на iq_k , получим неоднородную систему уравнений относительно $C_k^{(1)}$ и $C_k^{(2)}$:

$$(S_{ik} - \rho_{11}\omega^{2}\delta_{ik})C_{k}^{(1)} + (\beta_{ik} - \rho_{12}\omega^{2}\delta_{ik})C_{k}^{(2)} = -\Lambda_{ijkl}u_{kj0}^{(1)(s)}iq_{l};$$

$$(\beta_{ik} - \rho_{12}\omega^{2}\delta_{ik})C_{k}^{(1)} + (\gamma_{ik} - \rho_{22}\omega^{2}\delta_{ik})C_{k}^{(2)} = -A_{ij}u_{kj0}^{(1)(s)}iq_{l};$$

$$S_{ik} = \Lambda_{ijkl}q_{i}q_{l}, \quad \beta_{ik} = A_{ij}q_{k}q_{j}, \quad \gamma_{ik} = Qq_{i}q_{k}.$$

$$(12)$$

где δ_{ik} – символ Кронекера.

Система (12) состоит из шести уравнений с неизвестными $C_k^{(1)}$ и $C_k^{(2)}$ ($k=1,\ 2,\ 3$).

Решения системы находим по формулам Крамера [10]

$$C_{j}^{(\alpha)} = \frac{D_{j}^{(\alpha)}}{D} \quad (\alpha = 1, 2; j = \overline{1, 6});$$

$$D = \begin{vmatrix} S_{ik} - \rho_{11} & \omega^{2} & \delta_{ik} & \beta_{ik} - \rho_{12} & \omega^{2} & \delta_{ik} \\ \beta_{ik} - \rho_{12} & \omega^{2} & \delta_{ik} & \gamma_{ik} - \rho_{22} & \omega^{2} & \delta_{ik} \end{vmatrix}.$$
(13)

Здесь D — определитель, составленный из коэффициентов при неизвестных $C_k^{(1)}$ и $C_k^{(2)}$. $D_j^{(\alpha)}$ — определители, получающиеся из D заменой i -го столбца столбцом из свободных членов системы (12). В эти столбцы входит значение тензора дисторсии.

Для вычисления определителей D и D_j справедлива формула разложения данного определителя по элементам i-го столбца [10]

$$D = \sum_{i=1}^{6} (-1)^{i+j} a_{ij} M_{ij} \qquad (j = \overline{1,6}),$$
(14)

где i — номер столбца; j — номер строки; a_{ij} — элемент определителя, стоящий на пересечении i -ой строки и j -го столбца; M_{ij} — минор элемента a_{ij} матрицы шестого порядка.

Зная коэффициенты $C_j^{(\alpha)}$, вычисленные по формулам (13), можно по формулам (10) и (11) определить смещения компонент среды и упругую дисторсию АЭ.

В случае отсутствия ОЭ в пористой среде $(u_{kj0}^{(1)(s)}=0)$, и полагая $\lambda_k^{(1)}=C_k^{(1)}$, $\lambda_k^{(2)}=C_k^{(2)}$, система (12) принимает вид

$$(S_{ik} - \rho_{11}\omega^{2}\delta_{ik})\lambda_{k}^{(1)} + (\beta_{ik} - \rho_{12}\omega^{2}\delta_{ik})\lambda_{k}^{(2)} = 0;$$

$$(\beta_{ik} - \rho_{12}\omega^{2}\delta_{ik})\lambda_{k}^{(1)} + (\gamma_{ik} - \rho_{22}\omega^{2}\delta_{ik})\lambda_{k}^{(2)} = 0.$$
(15)

Задача сводится к решению системы (15) для определения собственных векторов $\lambda_k^{(\alpha)}$ (α =1, 2) (k =1,2,3) и собственных значений тензоров $\Lambda_{ijkl}q_jq_l$, $A_{ij}q_kq_j$, Qq_iq_k .

Условие существования нетривиальных решений системы (15), однородной относительно $\lambda_k^{(1)}$ и $\lambda_k^{(2)}$ определяет в общем случае шесть скоростей и, следовательно, шесть типов акустических волн в насыщенной жидкостью анизотропной пористой среде, которые находятся из определителя шестого порядка, составленного из коэффициентов при неизвестных $\lambda_k^{(1)}$ и $\lambda_k^{(2)}$ системы (15)

$$D = \begin{vmatrix} S_{ik} - \rho_{11}\omega^2 \delta_{ik} & \beta_{ik} - \rho_{12}\omega^2 \delta_{ik} \\ \beta_{ik} - \rho_{12}\omega^2 \delta_{ik} & \gamma_{ik} - \rho_{22}\omega^2 \delta_{ik} \end{vmatrix} = 0, \qquad (i = 1, 2, 3; k = 1, 2, 3).$$
 (16)

При выполнении этого условия остаются линейно-независимыми только три первых уравнения системы (15). Они являются следствием трех уравнений второй системы (15). Тогда последние три уравнения можно отбросить. Выбирая в качестве свободных неизвестных величины $\lambda_k^{(2)}$ (k=1, 2, 3), а первую систему уравнений запишем в виде

$$(S_{ik} - \rho_{11}\omega^2 \delta_{ik})\lambda_k^{(1)} = (\rho_{12}\omega^2 \delta_{ik} - \beta_{ik})\lambda_k^{(2)}, \quad (k = 1, 2, 3).$$
 (17)

Запишем систему (17) в матричной форме

$$B\lambda^{(1)} = C\lambda^{(2)},$$

$$B = (S_{ik} - \rho_{11}G^2\delta_{ik}), \quad C = (\rho_{12}G^2\delta_{ik} - \beta_{ik}), \quad \lambda^{(\alpha)} = (\lambda_k^{(\alpha)}), \quad \alpha = 1, 2.$$
(18)

Здесь B — матрица размера 3×3 , состоящая из коэффициентов при неизвестных $\lambda_k^{(1)}$, C — матица размера 3×3 , состоящая из коэффициентов при свободных неизвестных $\lambda_k^{(2)}$; $\lambda^{(1)}$ — матрица-столбец неизвестных $\lambda_k^{(1)}$; $\lambda^{(2)}$ — матрица-столбец свободных неизвестных $\lambda_k^{(2)}$.

Для нахождения неизвестных $\lambda_k^{(1)}$ умножим слева обе части равенства (18) на обратную матрицу B^{-1} , получим

$$\lambda^{(1)} = B^{-1}C\lambda^{(2)}, \quad B^{-1} = \frac{1}{\Delta_1}B^{\bullet},$$
 (19)

где $\Delta_1 = \left| S_{ik} - \rho_{11} G^2 \delta_{ik} \right| \neq 0$ — определитель матрицы $B; B^{\bullet}$ — присоединенная матрица, элементы которой являются алгебраическими дополнениями элементов матрицы B^T , транспонированной к матрице B.

Запишем (19) в развернутом виде

$$\left(\lambda_k^{(1)}\right) = \frac{1}{\Delta_1} \left(B_{ji}\right) \left(c_{ij}\right) \left(\lambda_k^{(2)}\right), \quad (k = 1, 2, 3).$$
 (20)

Здесь B_{ji} — алгебраические дополнения присоединенной матрицы B^* ; c_{ij} — элементы матрицы C.

Из соотношений (20) находим неизвестные величины $\lambda_k^{(1)}$, выраженные через свободные $\lambda_k^{(2)}$.

В случае отсутствия связи между фазами ($\rho_{12}=0,A_{ij}=0$), систему (15) перепишем в виде

$$(\Lambda_{ijkl}q_jq_l - \rho_{11}\omega^2\delta_{ik})\lambda_k^{(1)} = 0, \quad \Delta_1 = \left|\Lambda_{ijkl}q_jq_l - \rho_{11}\omega^2\delta_{ik}\right| = 0; \tag{19}$$

$$(Qq_iq_k - \rho_{22}\omega^2\delta_{ik})\lambda_k^{(2)} = 0, \quad \Delta_2 = |Qq_iq_k - \rho_{22}\omega^2\delta_{ik}| = 0.$$
 (20)

Выводы. Из системы (19) следует, что амплитуда $\lambda_k^{(1)}$ первой фазы, удовлетворяющая уравнению (19), является главным вектором, а $\rho_{11}c_1^2$, $\rho_{11}c_2^2$, $\rho_{11}c_3^2$ – определяют при заданном q_i действительные главные значения симметричного тензора второго ранга $\Lambda_{ijkl}q_jq_l$, а из системы (20) следует, что амплитуда $\lambda_k^{(2)}$ второй фазы, удовлетворяющая уравнению (20), является главным вектором, а $\rho_{22}c_i^2$ (i = 1, 2, 3) при заданном q_i определяют поперечные акустические волны распространяющиеся со скоростью $c_t = \sqrt{Q/\rho_{22}}$.

ЛИТЕРАТУРА

- 1. Бойко, В. С. Элементарные дислокационные механизмы акустической эмиссии / В. С. Бойко, В. Д. Нацик // Элементарные процессы пластической деформации металлов. Киев. 1978. С. 159–189.
- 2. Нацик, В. Д. Теория элементарных механизмов акустической эмиссии / В. Д. Нацик, К. А. Чишко // Акустическая эмиссия материалов и конструкций. Ростовна-Дону: Изд-во Ростовского университета. 1989. С. 10–18.
- 3. Нацик, В. Д. Звуковое излучение дислокаций, движущихся у поверхности кристалла / В. Д. Нацик, К. А. Чишко // ФТТ. 1978. Т. 20. Вып. 2. С. 457–465.
- 4. Косевич, А. М. Дислокации в теории упругости / А. М. Косевич // Киев. $1978. C.\ 220.$
- 5. Biot, M. A. Theory of elasticity and consolidation for a porous anisotropic solid / M. A. Biot // Journal of Applied Phisic. 1955. Vol. 26. № 2. P. 182–185.
- 6. Biot, M. A. Mechanics of Deformation and Acoustic Propagation in Porous Media / M. A. Biot // Journal of Applied Physic. 1962. Vol. 33. № 4. P. 1483–1498
- 7. Био, М. А. Механика деформирования и акустическое распространение в пористых средах / М. А. Био // Журнал «Прикладная физика». Т. 33. № 4. 1962. С. 1483—1498.
- 8. Поленов, В. С. Распространение волн в насыщенной жидкостью неоднородной пористой среде / В. С. Поленов, А. В. Чигарев // ПММ. -2010. Т. 74. Вып. 2. С. 276—284.

- 9. Поленов, В. С. Распространение упругих волн в насыщенной вязкой жидкостью пористой среде / В. С. Поленов // ПММ. 2014. Т. 78. Вып. 4. С. 501–507.
- 10. Ландау, Л. Д. Теория упругости / Л. Д. Ландау, Е. М. Лифшиц // М.: Наука, 1965. С. 202.
- 11. Ильин, В. А. Линейная алгебра / В. А. Ильин, Э. Г. Позняк // М.: Мир, 1984. С. 204.

Поступила: 26.01.2021