МОДЕЛИРОВАНИЕ ПРОЦЕССА ДЕГРАДАЦИИ КОМПОЗИТНЫХ МАТЕРИАЛОВ

^{1,2}Каюмов Р. А., ¹Сулейманов А. М., ¹Страхов Д. Е.

¹Казанский государственный архитектурно-строительный университет, Казань ²Казанский национальный исследовательский технический университет им. А.Н. Туполева, Казань

Применение несущих конструкций из композитных материалов в настоящее время сдерживается недостаточной изученностью как механических характеристик новых композитных материалов, так и механизмов развития повреждений этих материалов, оказывающих влияние на несущую способность и долговечность как самих элементов, так и их соединений.

Недостатки точных опытных данных, а также многообразие составов модифицированных композитных элементов с различными эксплуатационными свойствами является существенным препятствием при разработке методик расчета конструкций из полимерных композитных материалов, обеспечивающих прогнозируемую долговечность, а также описание их реологических свойств, оценка характеристик длительного разрушения на сегодняшнее время являются достаточно актуальными задачами.

Из множества различных внешних воздействий, влияющих на свойства композитного материала в сложных условиях эксплуатации, важнейшими являются температура, водяная, щелочная либо кислая среда, влияние атмосферы, различные биоповреждения, приводящие к климатическому и естественному старению материалов [1–10].

Также установлено, влияние солнечного излучения на рост трещин при совместном воздействии нагрузки и УФ-излучения [11]. В [12] исследован армированный стекловолокном композитный полимерный материал в виде плоских протяженных элементов, в различных агрессивных средах. Деформирование исследуемых образцов (рис. 1) с методом продольного изгиба [13–15].

Работоспособность композитного материала зависит от термостойкости, прочности, жесткости и характеризуется набором физических констант, где изменение одного параметра влияет на изменение других. Учет процесса деградации полимерного композита должен являться частью инженерных расчетов элементов конструкции и их соединений. Выполнив моделирование процесса старения можно осуществить прогноз долговечности материала.

Предлагаемое исследование может быть использовано при разработке методик прогнозирования срока службы несущих конструкций из полимерных композитных материалов, обеспечивающих прочностную надежность с учетом воздействия различных агрессивных факторов, влияющих на понижение характеристик исследуемого материала во времени.

Исследование плоских протяженных элементов, армированных стекловолокном.

В качестве различных сред кроме воздушной для исследования были выбраны дистиллированная вода и водные растворы щелочи. Водный раствор щелочи моделирует воздействие бетона. Чтобы исключить взаимодействие с CO₂ воздуха и испарения, щелочной раствор находился в закрытой емкости. Выполнено механическое деформирование исследуемых образцов согласно тому, как это изображено на рис. 1. При проведении промежуточных контрольных измерений оснастку разбирали и после выполнения необходимых замеров вновь собирали. Температура испытаний была принята 18±3 градусов. Образцы выдерживались в выбранных средах до 600 дней.

Рис. 1. Общий вид исследуемых образцов. Деформирование принято 20, 30, и 60 % от разрушающей величины

В растворе щелочи, выявлено разрушение полимерной матрицы в виде трещин шириной до 0,3 мм (см. рис. 2). После испытаний в водной и воздушной средах разрушения полимерной матрицы не выявлено. Получены необходимые зависимости остаточных деформаций от времени.

Рис. 2. Разрушение полимерной матрицы по направлению армирования в виде трещин шириной до 0,3 мм, щелочной состав, 600 дней

Определены величины разрушающей нагрузки после 600 дней испытаний. Общий вид испытания приведен на рис. 3, полученные значения представлены в табл. 1.

Рис. 3. Проведение разрушающих испытаний образцов

Испытание	Величина прогиба v_{\max} , см	Нагрузка <i>F</i> , кг	
Удвоенный щелочной состав	3	14,41	
	2,5	15,02	
	1,5	15,34	
Щелочной состав	3	16,39	
	2,5	16,62	
	1,5	17,1	
Водная среда	3	56,2	
	2,5	56,8	
	1,5	58,1	
Воздушная среда	3	58,2	
	2,5	60,4	
	1,5	68,2	

Таблица 1 – Зависимости величин прогибов и разрушающих нагрузок от используемых сред

Выявлено, что через восемнадцать суток остаточный прогиб $f^{\text{остат}}$ практически перестает изменяться [12]. Поэтому можно в запас прочности считать, что за упругую часть прогиба может быть принята следующая величина:

$$f^{\rm ynp} = f - f^{\rm octar}.$$
 (1)

Тогда по формулам, приведенным, например, в [1], можно найти максимальную деформацию в середине образца, которая остается постоянной в любой момент времени:

$$\varepsilon_{max} = \pm \frac{1000}{2\rho};$$

$$\rho = L / (\pi \sqrt{\frac{1}{2}} \cdot \frac{3 + 0.252\delta^2 + 0.077\delta^3 + 0.079\delta^4}{0.125 - 0.015\delta - 0.008\delta^2}}),$$
(2)

где *L* и *b* – длина и толщина образца [11].

Напряжение определяется по закону Гука:

$$\sigma_{max} = E \cdot \varepsilon_{max}^{\text{ynp}} = E \cdot \left(\varepsilon_{max} - \varepsilon^{\text{octat}}\right). \tag{3}$$

Для отыскания величины ε_{max}^{ynp} воспользуемся пропорцией:

$$\frac{f^{\rm ynp}}{f} = \frac{\varepsilon^{\rm ynp}}{\varepsilon_{max}}.$$
(4)

Теперь можно найти истинные значения сжимающей силы F:

$$\sigma_{max} = \frac{F \cdot f^{\text{ynp}}}{W}.$$
(5)

В результате расчета получены следующие значения искомых характеристик (табл. 2):

№ эксперимента	f	$f^{ m oct}$	f^{ynp}	F/F _{pasp}	σ/σ_{pasp}
1	38,61	8,53	30,08	0,156	0,156
2	48,1	9,61	38,44	0,240	0,240
3	52,71	11,13	41,58	0,394	0,394
4	63,7	13,04	50,46	0,477	0,477

Таблица 2 – Характеристики, полученные по результатам расчета

Здесь и в (5) под *F* понимается реальная сжимающая сила, действующая на образец после релаксации напряжений.

Из (5) вытекает, что

$$\frac{\sigma}{\sigma_{\text{pasp}}} = \frac{F}{F_{\text{pasp}}}.$$
(6)

Далее $\sigma_{\text{разр}}$ будем называть пределом прочности и для краткости обозначать также буквой *R*.

Для моделирования процесса старения материала под действием УФ учтем, что в первые моменты времени происходит увеличение его прочности.

Выберем следующую аппроксимацию для предела прочности, как функцию времени *t* и интенсивности (мощности) облучения *у* при отсутствии напряжения:

$$R_0(t,\gamma) = R_{00} \frac{1 + t\gamma/k_0}{1 + c(t\gamma/k_0)^2}.$$
(7)

Здесь k_0, c – искомые из эксперимента константы материала; R_{00} – начальная прочность; $R_0(t, \gamma)$ – прочность, которую приобретает ненапряженный материал через время t при облучении УФ.

Ясно, что разрушающие нагрузки пропорциональны $R_0(t,\gamma)$ и R_{00} :

$$m \cdot F_0^{\text{pasp}}(t, \gamma) = R_0(t, \gamma), \tag{8}$$

$$m \cdot F_{00}^{\text{pasp}}(0,0) = R_{00},\tag{9}$$

где *т* – коэффициент пропорциональности.

Подставляя (8) и (9) в (7), получим:

$$F_0^{\text{pasp}}(t,\gamma) = \frac{1 + t\gamma/k_0}{1 + c(t\gamma/k_0)^2} \cdot F_{00}^{\text{pasp}}(0,0).$$
(10)

Из эксперимента известно значение $F_0^{\text{pasp}}(t_{max}, \gamma)$ и значение $F_{00}^{\text{pasp}}(0, 0)$:

$$F_{00}^{\text{pasp}}(0,0) = 57 \text{ krc}, \tag{11}$$

$$F_0^{\text{pasp}}(t_{max},\gamma) = 63 \text{ кгс.}$$
(12)

Здесь

$$t_{max} = 56 \text{ сут}, \gamma = 2,0 \frac{\kappa B T}{M^2}.$$
 (13)

Для получения дополнительного условия предположим, что при

t

$$> t_{max} = 56$$
 сут.

дальнейшего упрочнения можно не ожидать, это идет в запас прочности. Тогда это условие можно записать в виде:

$$F_{max}^{\text{pasp}} = F_0^{\text{pasp}}(t_{max}, \gamma) = 63 \text{ кгс.}$$
(14)

По теореме Ферма получим:

$$\frac{\partial F_0^{\text{pasp}}(t,\gamma)}{\partial t}\bigg|_{t=t_{max}} = 0.$$
 (15)

Решая совместно систему уравнений (13), (10) при $t = t_{max}$ найдем k_0, c :

$$c = \frac{[F_{00}]^{pasp}}{4[F_{max}]^{pasp} - F_{00}]^{pasp}} \cdot F_{max}^{pasp}.$$
 (16)

$$k_{0} = \frac{F_{00}^{\text{pasp}} \cdot t_{max} \cdot \gamma}{2[F_{max}^{\text{pasp}} - F_{00}^{\text{pasp}}]}.$$
(17)

Примечание: уравнение (15) после дифференцирования и упрощений имеет следующий вид:

$$k_0^2 - c \cdot t \cdot \gamma \cdot (t \cdot \gamma + 2k_0) = 0.$$
⁽¹⁸⁾

После подстановки в систему значений (11)-(13) и ее решения получим:

$$k_0 = 532 \frac{\kappa \# \pi}{M^2}, \quad c = 2,15.$$
 (19)

(20)

Вид функции (10) представлен на рис. 4, *a*. Он характеризует изменение прочности $R_0(t,\gamma) = m \cdot F_0^{\text{pasp}}(t,\gamma)$ от воздействия УФ.

Далее введем аппроксимацию для остаточной прочности $R(t, \gamma, \sigma)$, которая изменяется вследствие воздействия напряжения, а именно в виде:

 $R(t,\gamma,\sigma) = R_0(t,\gamma) \cdot e^{-\beta \cdot |\sigma| \cdot t}.$

Рис. 4. Графики зависимостей разрушающих нагрузок: а) расчетная зависимость разрушающей нагрузки F₀^{pasp}(t, γ) (в кгс) от времени (в сутках) для ненапряженного образца при воздействии только УФ облучения мощностью γ = 2,0 кВт/м²; б) зависимость разрушающей нагрузки F^{pasp}(t, γ, σ) (в кгс) от времени (в сутках) для последнего образца при воздействии и УФ, и напряжения σ/σ_{pasp} = 0,47 (иллюстрация авторов); в) зависимость разрушающей нагрузки F^{pasp}(t_{max}, γ, σ) (в кгс) от относительного напряжения σ/σ_{pasp} через

t_{max} = 56 суток при воздействии и УФ, и напряжения. Маркерами обозначены экспериментальные, сплошной линией – расчетные значения; г) зависимость разрушающей нагрузки F^{pasp}(t_{max}, γ, σ) (в кгс) от относительного напряжения σ/σ_{pasp} через

 $t_{max} = 250$ суток при воздействии и УФ и напряжения при $\gamma = 2,0$ кВт/м²

То есть от воздействия напряжения σ прочность предполагается уменьшающейся по экспоненциальному закону.

Для получения значения константы β нужно иметь один эксперимент. Снова считаем, что:

$$\frac{R(t,\gamma,\sigma)}{R_0(t,\gamma)} = \frac{F^{\text{pasp}}(t,\gamma,\sigma)}{F_0^{\text{pasp}}(t,\gamma)}.$$
(21)

Тогда из (20) и (21) вытекает выражение для β:

$$\beta = \frac{1}{|\sigma|t} \{ ln[F_0^{\text{pasp}}(t,\gamma)] - ln[F^{\text{pasp}}(t,\gamma,\sigma)] \}.$$
(22)

В качестве $F^{\text{pasp}}(t, \gamma, \sigma)$ примем значение, полученное из эксперимента при максимальном значении прогиба:

$$F^{\text{pasp}}(t_{max}, \gamma, \sigma^{\text{pasp}} \cdot 0,477) = 0,477 \cdot F_{00}^{\text{pasp}};$$
(23)

$$F_0^{\text{pasp}}(t_{max},\gamma) = 63 \text{ кгс.}$$
(24)

Результаты расчетов дают значение:

 $\beta = 0,00647.$

Выводы. На рис. 4, δ приводится зависимость разрушающей нагрузки от времени в интервале [0–56 суток] для последнего образца с прогибом f = 63,7 мм.

На рис. 4, *в* приведены экспериментальные значения разрушающей нагрузки в зависимости от отношения $\frac{\sigma}{\sigma_{\text{разр}}} = 0,156; 0,240; 0,394; 0,477$ при выдержке $t_{\text{max}} = 56$ суток и расчетная зависимость $F^{\text{pa3p}}(t_{max}, \gamma, \sigma)$ от напряжений.

Отметим, что эта зависимость близка к линейной ввиду малого значения коэффициента β и малого интервала времени. Если увеличить интервал времени облучения, то нелинейность зависимости $F^{\text{pasp}}(t_{max}, \gamma, \sigma)$ от относительного напряжения $\sigma/\sigma_{\text{pasp}}$ будет проявляться сильнее. Это видно и из рис. 4, *г*), при этом время выдержки под облучением $\gamma = 2,0$ кВт/м² было принято 250 суток

Работа выполнена в рамках РФФИ (проект № 19-08-00349) и РНФ (проект № 19-19-00059).

ЛИТЕРАТУРА

1. Блазнов, А. Н. Влияние температуры на прочность базальто- и стеклопластиков / А. Н. Блазнов [и др.] // Ползуновский вестник. – 2014. – № 4, Т. 2. – С. 154–159.

2. Федоров, Ю. Ю. Влияние факторов холодного климата на механические свойства композитных стержней из стекло- и базальтопластиков / Ю. Ю. Федоров [и др.] // Обработка металлов (технология, оборудование, инструменты). – 2012. – № 2. – С. 56–61.

3. Блазнов, А. Н. Прогнозирование прочности композитных стержней в условиях воздействия щелочной среды / А. Н. Блазнов, В. Ф. Савин, А. А. Краснов // Южно-сибирский научный вестник. – 2014. – № 4(8). – С. 12–14.

4. Sen, R. Durability of E-Glass. Vinylester Reinforcement in Alkaline Solution / R. Sen, G. Mullins, T. Salem // ACI Structural Journal. – 2002. – Vol. 99, № 3. – P. 369–375.

5. Cabral-Fonseka, S. Artificial accelerated ageing of GFRP pultruded profiles made of polyester and vinylester resins: characterisation of physical–chemical and mechanical damage / S. Cabral-Fonseka, [at el.] // Strain, 2012. – N 48. – P. 162–173.

6. Корецкая, Л. Влияние воды на свойства стеклопластиков / Л. Корецкая, Т. Александрова // Технологии и материалы. – 2011. – № 1(31). – С. 38–41.

7. Николаев, Е. В. «Комплексное исследование воздействия климатических и эксплуатационных факторов на новое поколение эпоксидного связующего и полимерных композиционных материалов на его основе» / Е. В. Николаев [и др.] // Труды ВИАМ. – 2016. – Часть 4. Натурные климатические испытания полимерных композиционных материалов на основе эпоксидной матрицы. – № 6(42).

8. Каблов, Е. Н. Климатическое старение композиционных материалов авиационного назначения. Ш. Значимые факторы старения / Е. Н. Каблов [и др.] // Деформация и разрушение материалов. – 2011. – № 1.

9. Ефимов, В. А. Исследование полимерных конструкционных материалов при воздействии климатических факторов и нагрузок в лабораторных и натурных условиях / В. А. Ефимов [и др.] // Авиационные материалы и технологии. – 2013. – С. 68–73

10. Карапетян, К. А. Сопротивление деформированию и разрушению армированных пластиков / К. А. Карапетян. – Ер.: Гитутюн НАН РА, 2014. – 164 с.

11. Ратнер, С. Б. Физическая механика пластмасс. Как прогнозируют работоспособность/ С. Б. Ратнер, В. П. Ярцев. – М.: Химия, 1992. – 320 с. 12. Kayumov, R. The study of the rheological properties of composite materials of power elements of building structures / R. Kayumov, D. Strakhov // International Scientific Conference on Socio-Technical Construction and Civil Engineering (STCCE – 2020) 29 April – 15 May 2020, Kazan, Russian Federation.

13. Арнаутов, А. К., Продольный изгиб как метод определения изгибной прочности композитных материалов / А. К. Арнаутов, Ю. М. Тарнопольский // Механика композитных материалов. – 2004. – Т. 40, № 1. – С. 25–42.

14. Савин, В. Ф. Метод определения долговременной прочности стеклопластиковой арматуры / В. Ф. Савин, А. Н. Блазнов // Измерения, автоматизация и моделирование в промышленности и научных исследованиях: межвузовский сборник. – 2001. – С. 214–219.

15. Савин, В. Ф. Продольный изгиб как средство контроля механических характеристик композиционных конструкционных материалов / В. Ф. Савин [и др.] // Измерения, автоматизация и моделирование в промышленности и научных исследованиях: межвузовский сборник. – 2002. – С. 167–172.

Поступила: 30.01.2021