НАПРЯЖЕННО-ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ ГИБКОГО КОНСОЛЬНОГО СТЕРЖНЯ, НАГРУЖЕННОГО СЛЕДЯЩЕЙ ПОПЕРЕЧНОЙ СИЛОЙ

Холодарь Б. Г.

Брестский государственный технический университет, Брест

При геометрически-линейном подходе к задаче о нагружении консольного стержня поперечной силой, приложенной на свободном конце, максимальные значения момента, напряжений и деформаций возникают в заделке. Ситуация, однако, меняется в задаче о больших перемещениях стержней, когда допущения такого подхода нарушаются и возникает необходимость использования теории гибких стержней. При этом задача об изгибе гибкого линейно-упругого стержня на участке, свободном от распределенной нагрузки, сводится к нелинейному дифференциальному уравнению второго порядка, решение которого выражается через эллиптические интегралы [1, 2]. Несмотря на наличие аналитического решения, получение результатов сопряжено с необходимостью приближенного определения некоторых числовых параметров, что можно выполнить, например, с использованием средств вычислительной техники.

Ниже рассматривается задача о нагружении гибкого стержня следящей поперечной силой, остающейся перпендикулярной осевой линии стержня при его изгибе. Решение строится путем численного интегрирования двух исходных уравнений первого порядка. При этом ролью возникающего в сечениях изогнутого стержня продольного усилия пренебрегаем.

Рис. 1. Координатная система и обозначения

Задачу удобно рассматривать не в исходных координатах *XY*, а в подвижных коорди-натах *UW* с началом на свободном торце стержня [1], поскольку при этом момент в точках оси не зависит от прогиба и однозначно определяется через координату u: $M(u) = P \cdot u$. Вводим в рассмотрение также дуговую координату *S* вдоль изогнутой оси стержня и угол наклона касательной $\omega(u)$ к оси U (рис.1).

По определению кривизны плоской кривой $\varkappa = \frac{d\omega}{ds}$ и из геометрических соотношений du dw

$$\frac{du}{ds} = \cos\omega, \frac{dw}{ds} = \sin\omega,$$

находим

$$K(u) = \int_{0}^{u} \varkappa du = \int_{0}^{\omega} \cos \omega d\omega = \sin \omega,$$

что устанавливает зависимость между величинами ω и u: $\omega = arcsinK$.

В соответствии с гипотезой плоских сечений связь кривизны упругой оси с действующим в сечении стержня моментом M = Pu имеет вид

$$\varkappa = \frac{M}{EJ},$$

что приводит к зависимости

$$K = \frac{Pu^2}{2EJ} = \frac{PL^2}{2EJ}\xi^2 = k_u^2\xi^2,$$
(1)

где $\xi = u/L_0, \ k_u = \sqrt{\frac{P}{2EJ}}L; \ E$ – модуль упругости материала; *J* – момент инерции сечения. Выр

разив
$$ds = \frac{du}{\cos\omega} = \frac{du}{\sqrt{1-K^2}}$$
, через интегралы
 $\zeta = \frac{s}{L} = \int_0^u \frac{du}{\cos\omega} = \int_0^{\xi} \frac{d\xi}{\sqrt{1-k_u^4\xi^4}}, w = \int_0^{\xi} tg\omega \, d\xi$

находим связь между координатами U, W и S.

При определении величин интегралов $\zeta = \int_0^u \frac{du}{\cos\omega}$ и $w = \int_0^{\xi} tg\omega \, d\xi$ функции $1/\cos\omega$ и $tg\omega$ аппроксимировались кубическими сплайнами по координате u, а их последующее интегрирование выполнялось в аналитической форме по участкам разбиения $u_i \le u \le u_{i+1}$. Итерационное определение координаты u, при которой для заданного k_u достигается значение S =1,0 или значение $\omega = \pi/2$, вызывает необходимость в использовании шага различной длины.

Найдя величины u_A и w_A , а также угол поворота γ осей UW относительно исходных *ХҮ*, по формулам

$$x_j = (u_A - u_j) \cdot sin\gamma + (w_A - w_j) \cdot cos\gamma,$$

$$y_j = (u_A - u_j) \cdot cos\gamma - (w_A - w_j) \cdot sin\gamma,$$

определяем положение точек изогнутой оси стержня.

Для общего представления о поведении стержня при произвольных уровнях нагрузки удобно от моментов перейти к безразмерной характеристике напряженно-деформированного состояния материала – деформации материала наружного растянутого слоя сечений стержня в точках его упругой оси.

С этой целью примем, что максимально допустимый момент равен значению M_{0} , составляющему некоторую долю от предельного упругого момента $M_0 = \psi \cdot \sigma_T W$, где $W - \omega$ момент сопротивления сечения, ψ – уровень допустимых напряжений относительно напряжений текучести материала σ_T . При геометрически-линейном подходе ему бы соответствовала сила $P_0 = M_0 / L_0$, так что далее имеем $0 < P \le P_0$. Текущее значение Pможно представить как $P = k_p P_0$ при коэффициенте k_p в интервале $0 \le k_p \le 1,0$, а соответствующая ей деформация є выразится тогда через деформацию текучести материала $\varepsilon_T = \sigma_T / E \operatorname{kak} \varepsilon = \psi k_p \xi \cdot \varepsilon_T.$

В нашем случае расчеты проведены при следующих числовых данных: $E = 1.10^5$ МПа, $\sigma_T = 1.10^5$ МПа, $L_0 = 100$ см, b = 1.0 см, h = 0.25 см (прямоугольное сечение с шириной b и высотой h). При этом $\varepsilon_T = 1.0$, вследствие чего задание упругой области работы конкретного материала может быть выполнено через величину коэффициента ψ .

При невысоких значениях ψk_p возможный вид деформированной оси стержня соответствует рис. 1. С ростом нагрузки угол ω_A становится больше 90°, зависимость S(u)приобретает неоднозначность, а на стержне появляется участок, на котором изгибающий момент имеет одинаковые значения в точках, симметричных относительно точки максимального момента $S(\omega = \pi / 2) < 1$, в силу чего изогнутая ось стержня также приобретает соответствующую симметрию (рис. 2). При нагрузках, для которых реализуются случаи $\omega = \pi n / 2$, величина ζ становится равной $\zeta_n = 1 / n$ для последовательных n = 1, 2, ..., a стержень делится на *n* одинаковых по форме участков длиной L_0/n .

Рис. 2. Формы упругой оси и максимальные деформации в сечениях стержня

При $\omega_A = \pi$ момент в заделке меняет знак, и кривая y(x) приобретает перегибную [1] форму равновесия, а при $\omega_A = 2\pi$ образует изогнутую ось с четырьмя участками длиной $L_0/4$. Формы оси изогнутого стержня при $0 \le \omega_A \le 2\pi$, когда кривая y(x) имеет участки как положительной, так и отрицательной кривизны, видны на рисунке. Распределение деформаций в поверхностном слое стержня по координате *S* при уровне нагрузки $0 \le \psi k_p \le 0,06(6)$ дает представление о положении наиболее нагруженных сечений стержня. По этим данным на рис. 3 построены значения максимальных (квадратики) и минимальных (ромбики) относительных моментов $m = M/M_T = \varepsilon/\varepsilon_T$ в стержне, а также момента в его заделке (кружки) в зависимости от уровня приложенной силы.

Рис. 3. Относительные моменты в зависимости от нагрузки

Практический интерес представляют как положение нагруженного торца стержня, так и положение на стержне сечений с максимальным изгибающим моментом. Эти сечения при $\omega_A > \pi/2$ смещаются из положения $\zeta = 1$ внутрь стержня в положения $\zeta < 1$. Параметры, соответствующие углу $\omega = \pi/2$, далее снабжены индексом «90».

Рис. 4. Упругая ось и деформации для стандартных кривых

Для нагрузки, соответствующей значениям n=1, 2, 3, 4, на рис. 4 показаны стандартные формы упругой линии. Величины расчетных параметров приведены в табл. 1. Обращают на себя внимание закономерности в представленных данных. Появление коэффициента 1/24 в таблице связано с выражениями для моментов инерции и сопротивления прямоугольного сечения.

n	$\zeta_{90} = 1/n$	$\varepsilon/\varepsilon_T = 0,0032275 \cdot n$	$\psi k_p = n^2/24$	ζ90 = 0,7746/n
1	1	0,0032275	0,00416(6)	0,77460
2	1/2	0,0064550	0,01666(6)	0,38730
3	1/3	0,0096825	0,037500	0,25820
4	1/4	0,0129100	0,06666(6)	0,19365

Таблица 1 – Числовые параметры к стандартным формам упругой оси

Эти результаты позволяет легко представить и построить форму изогнутой оси стержня – при заданном значении коэффициента k_p нужно провести расчет формы упругой оси для зоны $0 < \omega \le \pi/2$ и далее воспользоваться свойствами симметрии и антисимметрии кривых.

По рис. 2 можно увидеть, что в зоне максимального момента нормальная сила в сечении равна или близка к приложенной торцевой. Соответствующие однородные напряжения сжатия составляют весьма малую долю от изгибных ($\sigma_C/\sigma_H = h / 6L_0\xi_{90}$) и не выходят за рамки принятых допущений линейной теории, поэтому предположение о возможности пренебрежения нормальной компонентой силы в сечении можно считать оправданным.

С использованием представлений о симметрии участков упругой оси решается и задача о напряженно-деформированном состоянии гибкого стержня при наличии (кроме

следящей силы) дополнительного сосредоточенного момента M_B , приложенного на торце стержня. Конкретно был взят случай пропорциональной связи между приложенными торцевыми силовыми факторами: $M_B = k_M \cdot P \cdot h$. Расчеты проведены при $M_B \cdot P > 0$.

Особенностью задачи сравнительно с рассмотренной выше является появление участка стержня с положительной кривизной при отрицательной величине координаты u, лежащей в интервале – $u_0 < u < 0$, где $u_0 = k_M \cdot h$. Форма упругой оси для двух значений коэффициента пропорциональности $k_M = 1,5$ (слева) и $k_M = 7,5$ (справа) показана на рис. 5.

Рис. 5. Влияние торцевого момента на форму упругой оси стержня

Число шагов нагружения и величина поперечной силы на каждом шаге в обоих случаях одинаковы. Для данного рисунка величина шага вдвое ниже, чем для рис. 2. Можно отметить, что добавление торцевого момента при $M_B \cdot P > 0$ на всех уровнях нагружения увеличивает кривизну оси стержня как в данном примере, так и сравнительно с предыдущей задачей.

Использованная методика решения применима и при любой нелинейно-упругой зависимости между напряжениями и деформациями материала. Для этого достаточно трансформировать выражение (1) применительно к выбранному описанию диаграммы $\sigma(\varepsilon)$. Естественно, это не всегда можно выполнить в аналитической форме.

Если воспользоваться известной зависимостью $\sigma = A\varepsilon^m$, то вместо (1) получаем

$$K = \left(\frac{P}{AJ}\right)^{\frac{1}{m}} \cdot \frac{m}{m+1} \cdot u^{\frac{m+1}{m}}, \quad \text{при} \quad J = \frac{2b}{m+2} \cdot \left(\frac{h}{2}\right)^{m+2}.$$

Для связи с предыдущими расчетами принято A = E/m.

На рис. 6 показаны кривые y(x) для m = 0,75 и m = 0,50 при одинаковом шаге нагрузки *P*. Ее наибольшему значению для случая m = 1 соответствует форма упругой линии, которая находилась бы между стандартными кривыми при n = 3 и n = 4 на рис. 4. Это связано с тем, что с уменьшением параметра m крутизна кривой $\sigma(\varepsilon)$ быстро нарастает (жесткость материала значительно увеличивается).

Рис. 6. Формы упругой оси для нелинейного материала

Выводы. Присутствие торцевого момента *М*_{*B*} в случае нелинейно-упругого материала не вносит дополнительных особенностей в развитие напряженно-деформированного состояния стержня сравнительно со случаем линейной упругости.

ЛИТЕРАТУРА

1. Пономарев, С. Д. Расчеты на прочность в машиностроении / С. Д. Пономарев [и др.]; под ред. С. Д. Пономарева. – Том 1. – М.: ГНТИ машиностроительной литературы, 1956. – 884 с.

2. Босаков, С. В. К расчету гибких упругих стержней / С. В. Босаков // Строительная механика и расчет сооружений. – 2013. – № 2(247). – С. 2–5.

Поступила: 26.01.2021